LM117QML

LM117QML 3-Terminal Adjustable Regulator

Literature Number: SNVS356C

LM117QML

3-Terminal Adjustable Regulator

General Description

The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying either 0.5A or 1.5A over a 1.2V to 37V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators.

In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.

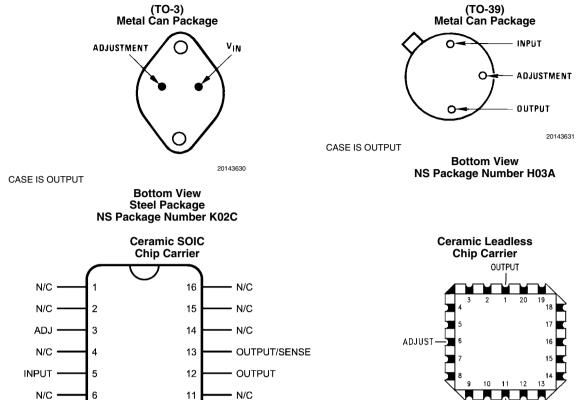
Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage.

supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment pin and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2V where most loads draw little current.

For the negative complement, see LM137 series data sheet.

Features


- Available with Radiation Guarantee
 - 100 krad(Si) — High Dose Rate 100 krad(Si) — ELDRS Free
- Guaranteed max. 0.3% load regulation (LM117)
- Guaranteed 0.5A or 1.5A output current
- Adjustable output down to 1.2V
- Current limit constant with temperature
- 80 dB ripple rejection
- Output is short-circuit protected

Ordering Information

NS Part Number	SMD Part Number	NS Package Number	Package Description
LM117E/883		E20A	20LD LCC
LM117H/883		H03A	3LD T0-39 Metal Can
LM117HRQMLV	5962R9951703VXA	H03A	3LD T0-39 Metal Can
(Note 12)	100 krad(Si)	поза	SLD 10-39 Metal Call
LM117HRLQMLV (Note 13)	5962R9951705VXA	H03A	3LD T0-39 Metal Can
ELDRS Free	100 krad(Si)	ПОЗА	SLD 10-39 Wetai Call
LM117K/883		K02C	2LD T0-3 Metal Can
LM117KRQMLV	5962R9951704VYA	K02C	2LD T0-3 Metal Can
(Note 12)	100 krad(Si)	NU2C	2LD 10-3 Metal Call
LM117WGRQMLV	5962R9951703VZA	WG16A	16LD Ceramic SOIC
(Note 12)	100 krad(Si)	Water	TOED CETAINIC SOIC
LM117WGRLQMLV (Note 13)	5962R9951705VZA	WG16A	16LD Ceramic SOIC
ELDRS Free	100 krad(Si)	Water	TOLD Ceramic 3010
LM117GWRQMLV	5962R9951706VZA	WG16A	16LD Ceramic SOIC
(Note 12)	100 krad(Si)	Water	TOED GETAINIE GOTO
LM117GWRLQMLV (Note 13)	5962R9951707VZA	WG16A	16LD Ceramic SOIC
ELDRS Free	100 krad(Si)	Water	TOLD OCIAINIC GOIG
LM117H MDE (<i>Note 13</i>)	5962R9951705V9A	(Note 1)	Bare Die
ELDRS Free	100 krad(Si)	(Note 1)	Daic Dic
LM117H MDR	5962R9951703V9A	(Note 1)	Bare Die
(Note 12)	100 krad(Si)	(Note 1)	Daie Die
LM117H MD8		(Note 1)	Bare Die
LM117KG MD8		(Note 1)	Bare Die

Note 1: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level_die

Connection Diagrams

Top View NS Package Number WG16A (Note 5)

10

9

N/C

N/C

20143667

INPUT 20143634 **Top View** NS Package Number E20A

LM117 Series Packages

N/C ·

N/C ·

Part		Design
Number	Package	Load
Suffix		Current
K	TO-3	1.5A
Н	T0–39	0.5A
WG, GW	Ceramic SOIC	0.5A
E	LCC	0.5A

Schematic Diagram R24 160 R22 160 R21 400 **\$**g R5 5.6k R3 190 130 I R2 310 R1 310 **₹** § 9

www.national.com

3

Absolute Maximum Ratings (Note 2)

Power Dissipation (<i>Note 3</i>)	Internally Limited
Input-Output Voltage Differential	+40V, -0.3V
Storage Temperature	-65°C ≤ T _A ≤ $+150$ °C
Maximum Junction Temperature (T _{Jmax}	+150°C
Lead Temperature Metal Package	300°C
Thermal Resistance	
θ_{JA}	
T0–3 Still Air	39°C/W
T0–3 500LF/Min Air flow	14°C/W
T0-39 Still Air	186°C/W
T0–39 500LF/Min Air flow	64°C/W
Ceramic SOIC Still Air "WG"	115°C/W
Ceramic SOIC 500LF/Min Air flow "WG"	66°C/W
Ceramic SOIC Still Air "GW"	130°C/W
Ceramic SOIC 500LF/Min Air flow "GW"	80°C/W
LCC Still Air	88°C/W
LCC 500LF/Min Air flow	62°C/W
$\theta_{ extsf{JC}}$	
T0-3	1.9°C/W
T0-39 Metal Can	21°C/W
Ceramic SOIC "WG" (Note 6)	3.4°C/W
Ceramic SOIC "GW"	7°C/W
LCC	12°C/W
Package Weight	
T0-39 Metal Can	960mg
SOIC "WG"	365mg
SOIC "GW"	410mg
ESD Tolerance (Note 4)	3KV

Recommended Operating Conditions

Operating Temperature Range $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ Input Voltage Range 4.25V to 41.25V

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LM117H & WG Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_I - V_O), I_L = 8mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		$V_{Diff} = 3V$			100	μΑ	1
I_{Adj}	Adjustment Pin Current	$V_{Diff} = 3.3V$			100	μΑ	2, 3
		V _{Diff} = 40V			100	μΑ	1, 2, 3
		$V_{Diff} = 3V, V_{O} = 1.7V$			5.0	mA	1
I_Q	Minimum Load Current	$V_{Diff} = 3.3V, V_{O} = 1.7V$			5.0	mA	2, 3
		$V_{Diff} = 40V, V_{O} = 1.7V$			5.0	mA	1, 2, 3
		$V_{Diff} = 3V$		1.2	1.3	V	1
V_{Ref}	Reference Voltage	$V_{\text{Diff}} = 3.3V$		1.2	1.3	V	2, 3
		V _{Diff} = 40V		1.2	1.3	V	1, 2, 3
V_{RLine}	Line Regulation	$3V \le V_{Diff} \le 40V,$ $V_{O} = 1.2V$		-8.9	8.9	mV	1
▼ RLine	Line negulation	$3.3V \le V_{Diff} \le 40V,$ $V_{O} = 1.2V$		-22.2	22.2	mV	2, 3
		V _{Diff} = 3V, I _L = 10mA to 500mA		-15	15	mV	1
V	Load Regulation	V _{Diff} = 3.3V, I _L = 10mA to 500mA		-15	15	mV	2, 3
V_{RLoad}		V _{Diff} = 40V, I _L = 10mA to 150mA		-15	15	mV	1
		V _{Diff} = 40V, I _L = 10mA to 100mA		-15	15	mV	2, 3
		$V_{Diff} = 3V$, $I_L = 10$ mA to 500mA		-5.0	5.0	μΑ	1
Al /lood	A dissatura and Command Change	$V_{Diff} = 3.3V$, $I_L = 10$ mA to 500mA		-5.0	5.0	μΑ	2, 3
Δι _{Adj} / Load	Adjustment Current Change	V _{Diff} = 40V, I _L = 10mA to 150mA		-5.0	5.0	μΑ	1
		V _{Diff} = 40V, I _L = 10mA to 100mA		-5.0	5.0	μΑ	2, 3
,	A.II	3V ≤ V _{Diff} ≤ 40V		-5.0	5.0	μA	1
ΔI_{Adj} / Line	Adjustment Current Change	3.3V ≤ V _{Diff} ≤ 40V		-5.0	5.0	μA	2, 3
I _{os}	Short Circuit Current	V _{Diff} = 10V		0.45	1.6	Α	1
θ_{R}	Thermal Regulation	$T_A = 25$ °C, $t = 20$ mS, $V_{Diff} = 40$ V, $I_L = 150$ mA		-6.0	6.0	mV	1
	0	V _{Diff} ≤ 15V	(Note 7)	0.5		Α	1, 2, 3
I _{CL}	Current Limit	$V_{\text{Diff}} = 40V$	(Note 7)	0.15		Α	1

AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_{l} = +6.25V, V_{O} = V_{Ref},$ $f = 120Hz, e_{l} = 1V_{RMS},$ $I_{L} = 125mA$	(Note 8)	66		dB	4, 5, 6

LM117K Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_I - V_O)$, $I_L = 10 \text{mA}$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		$V_{Diff} = 3V$			100	μA	1
I_{Adj}	Adjustment Pin Current	$V_{Diff} = 3.3V$			100	μΑ	2, 3
		$V_{\text{Diff}} = 40V$			100	μΑ	1, 2, 3
		$V_{Diff} = 3V, V_O = 1.7V$			5.0	mA	1
I_Q	Minimum Load Current	$V_{Diff} = 3.3V, V_{O} = 1.7V$			5.0	mA	2, 3
		$V_{Diff} = 40V, V_{O} = 1.7V$			5.0	mA	1, 2, 3
		$V_{\text{Diff}} = 3V$		1.2	1.3	V	1
V_{Ref}	Reference Voltage	$V_{\text{Diff}} = 3.3V$		1.2	1.3	V	2, 3
		$V_{\text{Diff}} = 40V$		1.2	1.3	٧	1, 2, 3
V	Line Regulation	$3V \le V_{Diff} \le 40V$, $V_{O} = 1.2V$		-8.9	8.9	mV	1
V _{RLine}	Line Regulation	$3.3V \le V_{Diff} \le 40V,$ $V_{O} = 1.2V$		-22.2	22.2	mV	2, 3
		V _{Diff} = 3V, I _L = 10mA to 1.5A		-15	15	mV	1
V	Load Regulation	V_{Diff} = 3.3V, I_L = 10mA to 1.5A		-15	15	mV	2, 3
V_{RLoad}	Load Regulation	V_{Diff} = 40V, I_L = 10mA to 300mA		-15	15	mV	1
		V_{Diff} = 40V, I_{L} = 10mA to 195mA		-15	15	mV	2, 3
		$V_{Diff} = 3V$, $I_L = 10mA \text{ to } 1.5A$		-5.0	5.0	μΑ	1
Al /Lood	Adjustment Current Change	$V_{Diff} = 3.3V$, $I_L = 10mA$ to 1.5A		-5.0	5.0	μΑ	2, 3
ΔI _{Adj} / Load	Adjustment Current Change	$V_{Diff} = 40V$, $I_L = 10mA$ to 300mA		-5.0	5.0	μΑ	1
		$V_{Diff} = 40V,$ $I_L = 10mA \text{ to } 195mA$		-5.0	5.0	μΑ	2, 3
	A.II	$3V \le V_{Diff} \le 40V$		-5.0	5.0	μA	1
ΔI_{Adj} / Line	Adjustment Current Change	$3.3V \le V_{Diff} \le 40V$		-5.0	5.0	μA	2, 3
I _{os}	Short Circuit Current	$V_{\text{Diff}} = 10V$		1.6	3.4	Α	1
θ_{R}	Thermal Regulation	$T_A = 25^{\circ}C$, t = 20mS, $V_{Diff} = 40V$, $I_L = 300mA$		-10.5	10.5	mV	1
	0 11: 11	V _{Diff} ≤ 15V	(Note 7)	1.5		Α	1, 2, 3
I _{CL}	Current Limit	$V_{\text{Diff}} = 40V$	(Note 7)	0.3		Α	1

AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR I	Ripple Rejection	$V_{I} = +6.25V, V_{O} = V_{Ref},$ $f = 120Hz, e_{I} = 1V_{RMS},$ $I_{L} = 0.5A$	(Note 8)	66		dB	4, 5, 6

LM117E Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_I - V_O), I_L = 8mA, P_D \le 1.5W$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		V _{Diff} = 3V			100	μΑ	1
I_{Adj}	Adjustment Pin Current	$V_{\text{Diff}} = 3.3V$			100	μΑ	2, 3
		V _{Diff} = 40V			100	μΑ	1, 2, 3
		$V_{Diff} = 3V, V_O = 1.7V$			5.0	mA	1
I_Q	Minimum Load Current	$V_{Diff} = 3.3V, V_{O} = 1.7V$			5.0	mA	2, 3
		$V_{Diff} = 40V, V_{O} = 1.7V$			5.0	mA	1, 2, 3
		V _{Diff} = 3V		1.2	1.3	V	1
V_{Ref}	Reference Voltage	$V_{\text{Diff}} = 3.3V$		1.2	1.3	V	2, 3
		V _{Diff} = 40V		1.2	1.3	V	1, 2, 3
V	Line Decidation	$3V \le V_{Diff} \le 40V,$ $V_{O} = 1.2V$		-8.9	8.9	mV	1
V _{RLine}	Line Regulation	$3.3V \le V_{Diff} \le 40V,$ $V_{O} = 1.2V$		-22.2	22.2	mV	2, 3
		V_{Diff} = 3V, I_L = 10mA to 100mA		-15	15	mV	1
	Load Regulation	V_{Diff} = 3.3V, I_{L} = 10mA to 100mA		-15	15	mV	2, 3
V		V _{Diff} = 40V,		-15	15	mV	1,2
V _{RLoad}	Load Hegulation	$I_L = 10$ mA to 100 mA		-25	25	mV	3
		$V_{Diff} = 3V$, $I_L = 10mA$ to 500mA		-15	15	mV	1
		V_{Diff} = 3.3V, I_{L} = 10mA to 500mA		-15	15	mV	2, 3
		$V_{Diff} = 3V$, $I_L = 10mA$ to 500mA		-5.0	5.0	μΑ	1
ΔI_{Adj} / Load	Adjustment Current Change	$V_{Diff} = 3.3V$, $I_L = 10mA$ to 500mA		-5.0	5.0	μΑ	2, 3
		$V_{Diff} = 40V,$ $I_{L} = 10mA \text{ to } 100mA$		-5.0	5.0	μΑ	1, 2, 3
		$3V \le V_{Diff} \le 40V$		-5.0	5.0	μΑ	1
ΔI_{Adj} / Line	Adjustment Current Change	$3.3V \le V_{Diff} \le 40V$		-5.0	5.0	μA	2, 3
I _{os}	Short Circuit Current	V _{Diff} = 10V		0.45	1.6	Α	1
θ_{R}	Thermal Regulation	$T_A = 25^{\circ}C$, $t = 20mS$, $V_{Diff} = 40V$, $I_L = 75mA$		-6.0	6.0	mV	1
		V _{Diff} ≤ 15V	(Note 7)	0.5		Α	1, 2, 3
I _{CL}	Current Limit	$V_{\text{Diff}} = 40V$	(Note 7)	0.15		Α	1
	<u></u>	1 =					

AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_{l} = +6.25V, V_{O} = V_{Ref},$ $f = 120Hz, e_{l} = 1V_{RMS},$ $I_{L} = 100mA, C_{Adj} = 10\mu f$	(Note 8)	66		dB	4, 5, 6

LM117H & WG RH Electrical Characteristics

DC Parameters (Note 12, Note 13)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		V _I = 4.25V, I _L = -5mA		1.2	1.3	V	1, 2, 3
M	Output Voltage	$V_1 = 4.25V, I_L = -500mA$		1.2	1.3	V	1, 2, 3
V _O		$V_1 = 41.25V, I_L = -5mA$		1.2	1.3	V	1, 2, 3
		$V_1 = 41.25V, I_L = -50mA$		1.2	1.3	V	1, 2, 3
V	Line Demulation	$4.25V \le V_1 \le 41.25V$,		-9.0	9.0	mV	1
V _{RLine}	Line Regulation	$I_L = -5mA$		-23	23	mV	2,3
V	Lord Description	$V_{I} = 6.25V,$ $-500mA \le I_{L} \le -5mA$		-12	12	mV	1, 2, 3
V _{RLoad}	Load Regulation	$V_{I} = 41.25V,$ $-50mA \le I_{L} \le -5mA$		-12	12	mV	1, 2, 3
V _{RTh}	Thermal Regulation	V _I = 14.6V, I _L = -500mA		-12	12	mV	1
	Adicat Dia Comment	V _I = 4.25V, I _L = -5mA		-100	-15	μA	1, 2, 3
I_{Adj}	Adjust Pin Current	$V_1 = 41.25V, I_L = -5mA$		-100	-15	μA	1, 2, 3
ΔI _{Adj} / Line	Adjust Pin Current Change	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-5.0	5.0	μΑ	1, 2, 3
ΔI _{Adj} / Load	Adjust Pin Current Change	$V_{I} = 6.25V,$ $-500mA \le I_{L} \le -5mA$		-5.0	5.0	μΑ	1, 2, 3
		V _I = 4.25V, Forced V _O = 1.4V		-3.0	-0.5	mA	1, 2, 3
I_Q	Minimum Load Current	$V_I = 14.25V$, Forced $V_O = 1.4V$		-3.0	-0.5	mA	1, 2, 3
		$V_1 = 41.25V$, Forced $V_0 = 1.4V$		-5.0	-1.0	mA	1, 2, 3
1	Output Short Circuit Current	V _I = 4.25V		-1.8	-0.5	Α	1, 2, 3
I _{os}	Output Short Circuit Current	$V_I = 40V$		-0.5	-0.05	Α	1, 2, 3
V _O (Recov)	Output Voltage Recovery	$V_{I} = 4.25V, R_{L} = 2.5\Omega,$ $C_{L} = 20\mu F$		1.2	1.3	V	1, 2, 3
		$V_1 = 40V, R_L = 250\Omega$		1.2	1.3	V	1, 2, 3
$\overline{V_0}$	Output Voltage	V _I = 6.25V, I _L = -5mA	(Note 9)	1.2	1.3	V	2
V _{Start}	Voltage Start-Up	$V_{I} = 4.25V, R_{L} = 2.5\Omega,$ $C_{L} = 20\mu F, I_{L} = -500mA$		1.2	1.3	V	1, 2, 3

AC Parameters (Note 12, Note 13)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub -
							groups
V_{NO}	Output Noise Voltage	$V_{I} = 6.25V, I_{L} = -50mA$			120	μV_{RMS}	7
ΔV_{O} / ΔV_{I}	Line Transient Response	$V_{I} = 6.25V, \Delta V_{I} = 3V,$ $I_{L} = -10mA$			6.0	mV/V	7
ΔV_{O} / ΔI_{L}	Load Transient Response	$V_{I} = 6.25V, \Delta I_{L} = -200mA,$ $I_{L} = -50mA$			0.6	mV/mA	7
$\Delta V_{I} / \Delta V_{O}$	Ripple Rejection	$V_I = 6.25V, I_L = -125mA,$ $E_I = 1V_{RMS}$ at $f = 2400Hz$		65		dB	4

DC Drift Parameters

The following conditions apply, unless otherwise specified.

Deltas performed on QMLV devices at Group B, Subgroup 5, only.

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		V _I = 4.25V, I _L = -5mA		-0.01	0.01	V	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.4	V _I = 4.25V, I _L = -500mA		-0.01	0.01	V	1
V _O	Output Voltage	V _I = 41.25V, I _L = -5mA		-0.01	0.01	V	1
		V _I = 41.25V, I _L = -50mA		-0.01	0.01	V	1
V _{RLine}	Line Regulation	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-4.0	4.0	mV	1
I _{Adj}	Adjust Pin Current	V _I = 4.25V, I _L = -5mA		-10	10	μA	1
		V _I = 41.25V, I _L = -5mA		-10	10	μA	1
V _O (Recov)	Output Voltage Recovery	$V_{I} = 4.25V, R_{L} = 2.5\Omega,$ $C_{L} = 20\mu f$		-0.01	0.01	V	1
		$V_{l} = 40V, R_{L} = 250\Omega$		-0.01	0.01	V	1

AC/DC Post Radiation Limits @ +25°C (Note 12, Note 13)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		V _I = 4.25V, I _L = -5mA		1.2	1.350	V	1
V	Output Valtage	V _I = 4.25V, I _L = -500mA		1.2	1.350	V	1
V _O	Output Voltage	V _I = 41.25V, I _L = -5mA		1.2	1.350	V	1
		V _I = 41.25V, I _L = -50mA		1.2	1.350	V	1
V _{RLine}	Line Regulation	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-25	25	mV	1
$\Delta V_{I} / \Delta V_{O}$	Ripple Rejection	$V_I = 6.25V, I_L = -125mA$ $E_I = 1V_{RMS}$ at f = 2400Hz		60		dB	4
V _O (Recov)	Output Voltage Recovery	$V_{l} = 4.25V, R_{L} = 2.5\Omega,$ $C_{L} = 20\mu f$		1.20	1.350	٧	1
		$V_{I} = 40V, R_{L} = 250\Omega$		1.20	1.350	V	1

LM117K RH Electrical Characteristics

DC Parameters (Note 12)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		$V_{I} = 4.25V, I_{L} = -5mA$		1.2	1.3	V	1, 2, 3
M	0.4	V _I = 4.25V, I _L = -1.5A		1.2	1.3	V	1, 2, 3
V _O	Output Voltage	$V_{I} = 41.25V, I_{L} = -5mA$		1.2	1.3	V	1, 2, 3
		V _I = 41.25V, I _L = -200mA		1.2	1.3	V V	1, 2, 3
V	Line Demoleties	$4.25V \le V_1 \le 41.25V$,		-9.0	9.0	mV	1
V _{RLine}	Line Regulation	I _L = -5mA		-23	23	V 1, 2, 3 mV 1 mV 2,3 mV 1 mV 2, 3 mV 1 mV 2, 3 mV 1 μΑ 1, 2, 3 μΑ 1, 2, 3 μΑ 1, 2, 3 μΑ 1, 2, 3 mA 1, 2, 3 mA 1, 2, 3 mA 1, 2, 3 mA 1, 2, 3	2,3
		V _I = 6.25V,		-3.5	3.5	mV	1
M	11512	-1.5A ≤ I _L ≤ -5mA		-12	12	mV	2, 3
V_{RLoad}	Load Regulation	V _I = 41.25V,		-3.5	3.5	mV	1
		-200mA ≤ I _L ≤ -5mA		-12	12	group V 1, 2, 3 V 1, 2, 3 V 1, 2, 3 W 1 mV 2, 3 mV 1 mV 2, 3 mV 1 mV 2, 3 mV 1 μA 1, 2, 3 μA 1, 2, 3 mA 1, 2, 3 mA 1, 2, 3 MA 1, 2, 3 N 2	2, 3
V _{RTh}	Thermal Regulation	V _I = 14.6V, I _L = -1.5A		-12	12	mV	1
	A.E. J.D. O. J.	V _I = 4.25V, I _L = -5mA		-100	-15	μA	1, 2, 3
I_{Adj}	Adjust Pin Current	V _I = 41.25V, I _L = -5mA		-100	-15	μA	1, 2, 3
ΔI _{Adj} / Line	Adjust Pin Current Change	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-5.0	5.0	μΑ	1, 2, 3
ΔI _{Adj} / Load	Adjust Pin Current Change	$V_{I} = 6.25V,$ -1.5A \le I _L \le -5mA		-5.0	5.0	μΑ	1, 2, 3
		$V_I = 4.25V$, Forced $V_O = 1.4V$		-3.0	-0.2	mA	1, 2, 3
I_Q	Minimum Load Current	$V_I = 14.25V$, Forced $V_O = 1.4V$		-3.0	-0.2	mA	1, 2, 3
		$V_I = 41.25V$, Forced $V_O = 1.4V$		-5.0	-0.2	mA	1, 2, 3
ı	Output Short Circuit Current	V _I = 4.25V		-3.5	-1.5	Α	1, 2, 3
I _{os}	Output Short Circuit Current	V _I = 40V		-1.0	-0.18	Α	1, 2, 3
V _O (Recov)	Output Voltage Recovery	$V_I = 4.25V, R_L = 0.833\Omega,$ $C_L = 20\mu F$		1.2	1.3	V	1, 2, 3
		$V_{I} = 40V, R_{L} = 250\Omega$		1.2	1.3	V	1, 2, 3
$\overline{V_0}$	Output Voltage	V _I = 6.25V, I _L = -5mA	(Note 9)	1.2	1.3	V	2
V _{Start}	Voltage Start-Up	$V_I = 4.25V, R_L = 0.833\Omega,$ $C_L = 20\mu F, I_L = -1.5A$		1.2	1.3	V	1, 2, 3

AC Parameters (Note 12)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub-
$\overline{V_{NO}}$	Output Noise Voltage	V ₁ = 6.25V, I ₁ = -100mA	+		120	μV _{RMS}	groups 7
_ VNO	Output Noise Voltage	$V_1 = 6.25V, \Delta V_1 = 3V,$			120	PYRMS	,
$\Delta V_{O} / \Delta V_{I}$	Line Transient Response	$I_L = -10 \text{mA}$	(Note 10)		18	mV	7
ΔV_{O} / ΔI_{L}	Load Transient Response	$V_{I} = 6.25V, \Delta I_{L} = -400mA,$ $I_{L} = -100mA$	(Note 11)		120	mV	7
$\Delta V_{I} / \Delta V_{O}$	Ripple Rejection	$V_I = 6.25V, I_L = -500mA,$ $E_I = 1V_{RMS}$ at $f = 2400Hz$		65		dB	4

11

DC Drift Parameters

The following conditions apply, unless otherwise specified.

Deltas performed on QMLV devices at Group B, Subgroup 5, only.

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		V _I = 4.25V, I _L = -5mA		-0.01	0.01	V	1
V	Output Valtage	V _I = 4.25V, I _L = -1.5A		-0.01	0.01	V	1
V _O	Output Voltage	V _I = 41.25V, I _L = -5mA		-0.01	0.01	V	1
		$V_{I} = 41.25V, I_{L} = -200mA$		-0.01	0.01	V	1
V _{RLine}	Line Regulation	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-4.0	4.0	mV	1
1	Adjust Din Current	V _I = 4.25V, I _L = -5mA		-10	10	μΑ	1
l _{Adj}	Adjust Pin Current	$V_{I} = 41.25V, I_{L} = -5mA$		-10	10	μΑ	1
V _O (Recov)	Output Voltage Recovery	$V_{I} = 4.25V, R_{L} = 0.833\Omega,$ $C_{L} = 20\mu S$		-0.01	0.01	V	1
		$V_{I} = 40V, R_{L} = 250\Omega$		-0.01	0.01	V	1

AC/DC Post Radiation Limits @ +25°C (Note 12)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
		$V_{I} = 4.25V, I_{L} = -5mA$		1.2	1.350	V	groups 1 1 1 1 1 1 4
M	Output Valtage	$V_1 = 4.25V, I_L = -1.5A$		1.2	1.350	V	1
V _O	Output Voltage	$V_{l} = 41.25V, I_{L} = -5mA$		1.2	1.350	V	1
		$V_{I} = 41.25V, I_{L} = -200mA$		1.2	1.350	V	1
V _{RLine}	Line Regulation	$4.25V \le V_1 \le 41.25V$, $I_L = -5mA$		-25	25	mV	1
W	Land Barudakan	$V_{I} = 6.25V,$ -1.5A \le I_{L} \le -5mA		-7.0	7.0	mV	1
V_{RLoad}	Load Regulation	$V_{I} = 41.25V,$ -200mA $\leq I_{L} \leq -5mA$		-7.0	7.0	mV	1
$\Delta V_I / \Delta V_O$	Ripple Rejection	$V_I = 6.25V, I_L = -500mA$ $E_I = 1V_{RMS}$ at f = 2400Hz		60		dB	4
V _O (Recov)	Output Voltage Recovery	$V_I = 4.25V, R_L = 0.833\Omega,$ $C_L = 20\mu S$		1.20	1.350	V	1
		$V_{I} = 40V, R_{L} = 250\Omega$		1.20	1.350	V	1

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. "Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO39, LCC, and ceramic SOIC packages, and 20W for the TO3 package."

Note 4: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

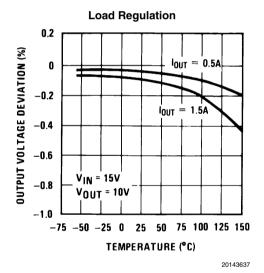
Note 5: For the Ceramic SOIC device to function properly, the "Output" and "Output/Sense" pins must be connected on the users printed circuit board.

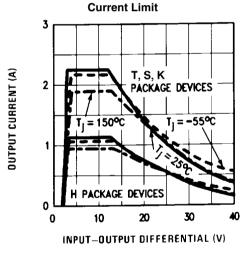
Note 6: The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using θ_{JA} , rather than θ_{JC} , thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out the package, since the thermal resistance of the leadframe material is very poor, relative to the material of the package base. The stated θ_{JC} thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.

Note 7: Guaranteed parameter, not tested.

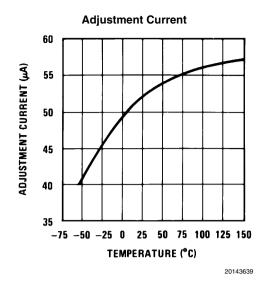
Note 8: Tested @ 25°C; guaranteed, but not tested @ 125°C & -55°C

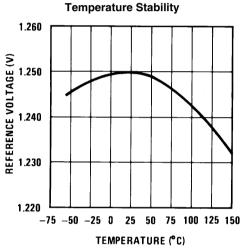
Note 9: Tested @ $T_A = 125$ °C, correlated to $T_A = 150$ °C

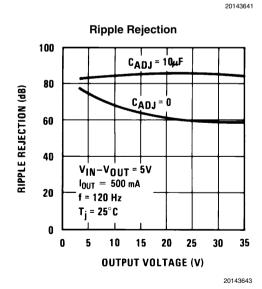

Note 10: SMD limit of 6mV/V is equivalent to 18mV

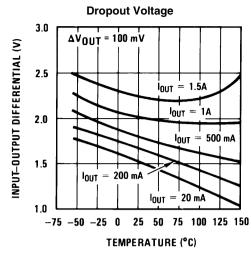

Note 11: SMD limit of 0.3mV/V is equivalent to 120mV

Note 12: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the "Post Radiation Limits" table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in Mil-Std-883, Method 1019.5, Condition A.

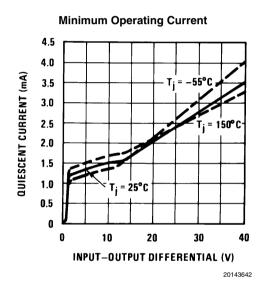

Note 13: Low dose rate testing has been performed on a wafer-by-wafer basis, per test method 1019 condition D of MIL-STD-883, with no enhanced low dose rate sensitivity (ELDRS) effect.

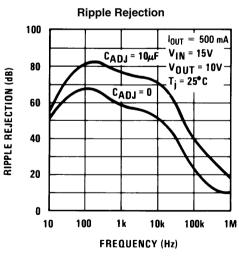

Typical Performance Characteristics Output Capacitor = 0µF unless otherwise noted

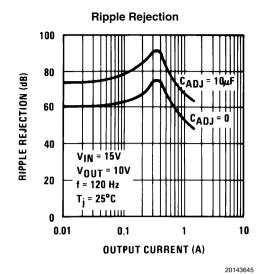


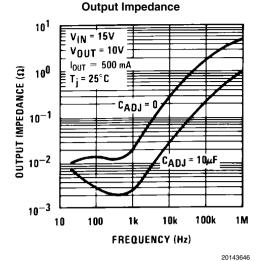


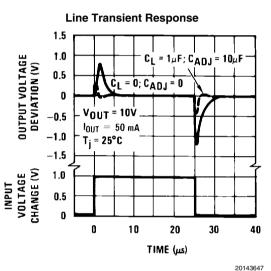
20143638

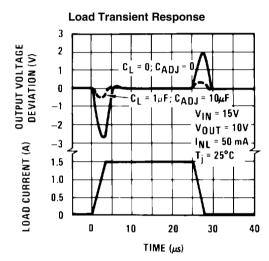







20143640





20143644

20143648

Application Hints

In operation, the LM117 develops a nominal 1.25V reference voltage, $V_{\rm REF}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_1 then flows through the output set resistor R2, giving an output voltage of

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1} \right) + I_{ADJ}R2$$

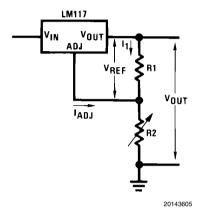


FIGURE 1.

Since the $100\mu A$ current from the adjustment terminal represents an error term, the LM117 was designed to minimize I_{ADJ} and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

EXTERNAL CAPACITORS

An input bypass capacitor is recommended. A $0.1\mu F$ disc or $1\mu F$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a 10µF bypass capacitor 80dB ripple rejection is obtainable at any output level. Increases over 10µF do not appreciably improve the ripple rejection at frequencies above 120Hz. If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about 25 μF in aluminum electrolytic to equal 1 μF solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5MHz. For this reason, 0.01 μF disc may seem to work better than a 0.1 μF disc as a bypass.

Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values be-

tween 500 pF and 5000 pF. A 1 μ F solid tantalum (or 25 μ F aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of the load capacitance larger than 10 μ F will merely improve the loop stability and output impedance.

LOAD REGULATION

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240 Ω) should be tied directly to the output (case) of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15V regulator with 0.05 Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_L$. If the set resistor is connected near the load the effective line resistance will be 0.05Ω (1 + R2/R1) or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

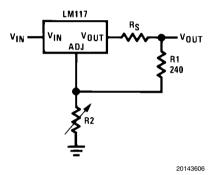
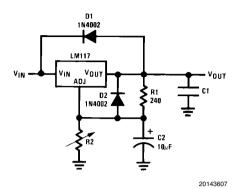


FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-39 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.


PROTECTION DIODES

When external capacitors are used with *any* IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10\mu F$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

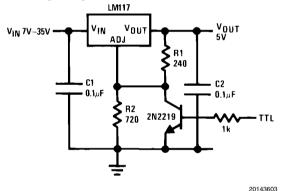
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of $V_{\text{IN}}.$ In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25\mu\text{F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when $\it either$ the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25V or less and

 $10\mu F$ capacitance. Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25V and high values of output capacitance.

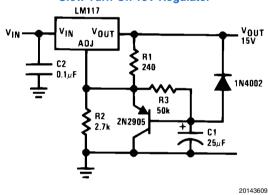
 $V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right) + I_{ADJ}R2$

D1 protects against C1 D2 protects against C2

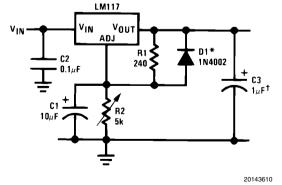

FIGURE 3. Regulator with Protection Diodes

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.

 $\theta_{(H-A)}$ is specified numerically by the heatsink manufacturer in the catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

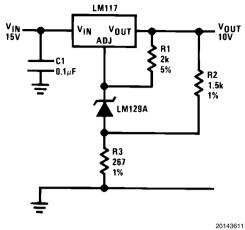

Typical Applications

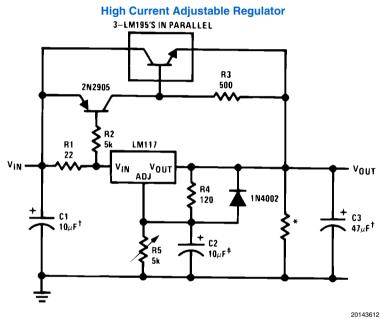
5V Logic Regulator with Electronic Shutdown*



*Min. output **≅** 1.2V

Slow Turn-On 15V Regulator


Adjustable Regulator with Improved Ripple Rejection



†Solid tantalum

*Discharges C1 if output is shorted to ground

High Stability 10V Regulator

‡Optional—improves ripple rejection

†Solid tantalum

*Minimum load current = 30 mA

0 to 30V Regulator LM117 V_{IN} V_{OUT} V_{OUT} R1 150 C1 0.1μF R2 5k R3 680 -10V

Power Follower

10V-40V

C1

0.1µF

10k

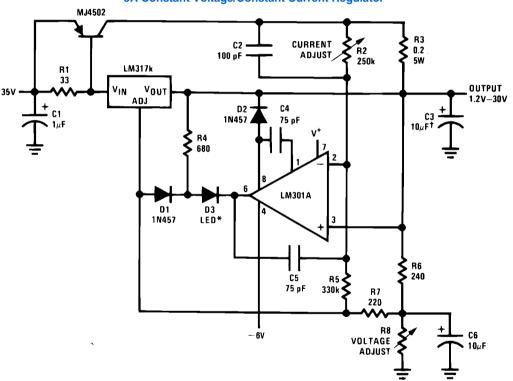
UN195

LM195

LM117

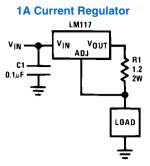
VIN VOUT

ADJ

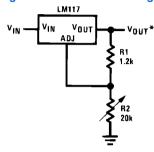

R2
2.4

20143614

20143615

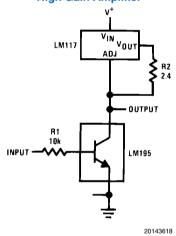

Full output current not available at high input-output voltages

5A Constant Voltage/Constant Current Regulator

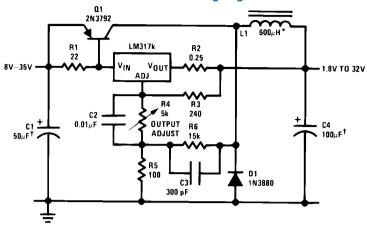


†Solid tantalum

*Lights in constant current mode

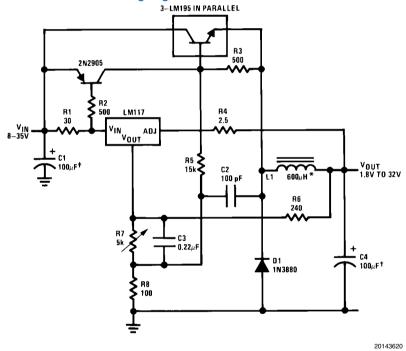

1.2V-20V Regulator with Minimum Program Current _____LM117

20143617


*Minimum load current ≅ 4 mA

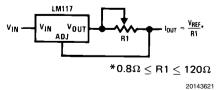
High Gain Amplifier

20

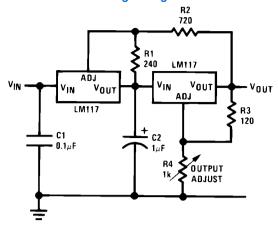

Low Cost 3A Switching Regulator

†Solid tantalum

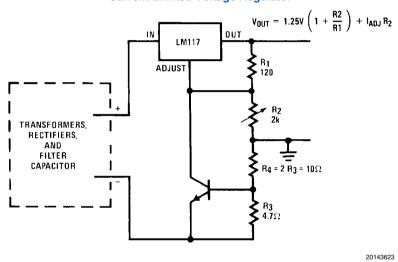
*Core—Arnold A-254168-2 60 turns


4A Switching Regulator with Overload Protection

†Solid tantalum


*Core—Arnold A-254168-2 60 turns

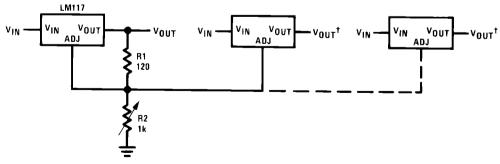
Precision Current Limiter


20143619

Tracking Preregulator

20143622

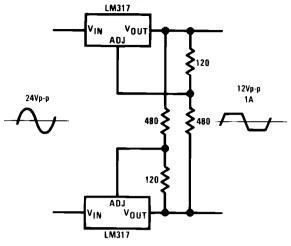
Current Limited Voltage Regulator

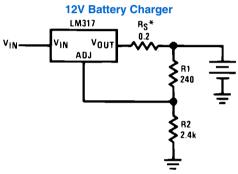


– Short circuit current is approximately $\frac{600 \text{ mV}}{\text{R3}}$, or 120 mA

(Compared to LM117's higher current limit)

—At 50 mA output only $^{3}\!\!\!/$ volt of drop occurs in R_3 and R_4

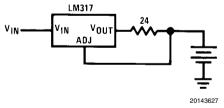

Adjusting Multiple On-Card Regulators with Single Control*


20143624

*All outputs within ±100 mV †Minimum load—10 mA

AC Voltage Regulator

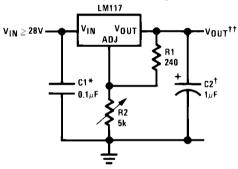
20143625



20143626

*RS—sets output impedance of charger: Z_{OUT} = R_{S} \left(1 + \frac{R2}{R1}\right)

Use of R_S allows low charging rates with fully charged battery.

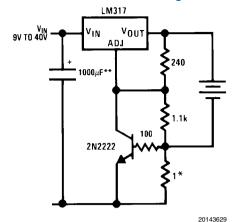

50mA Constant Current Battery Charger

Adjustable 4A Regulator LM317 LM317 VIN ADJ 100 2N2905 100 5k 156 1.5k

20143628

1.2V-25V Adjustable Regulator

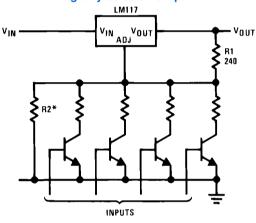
20143601


Full output current not available at high input-output voltages

*Needed if device is more than 6 inches from filter capacitors.

†Optional—improves transient response. Output capacitors in the range of $1\mu F$ to $1000\mu F$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.

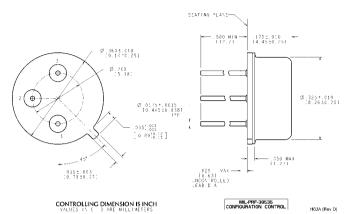
$$\dagger\dagger V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right) + I_{ADJ}(R_2)$$


Current Limited 6V Charger

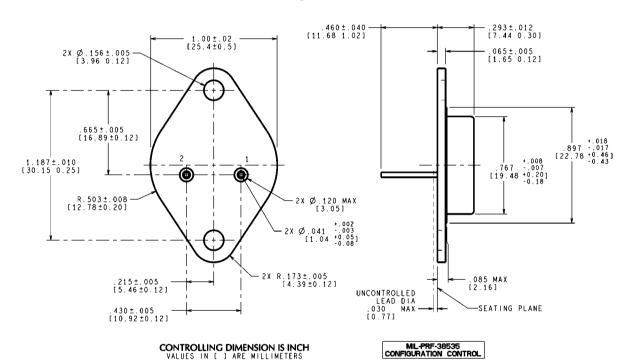
*Sets peak current (0.6A for 1Ω)

**The 1000 μF is recommended to filter out input transients

Digitally Selected Outputs

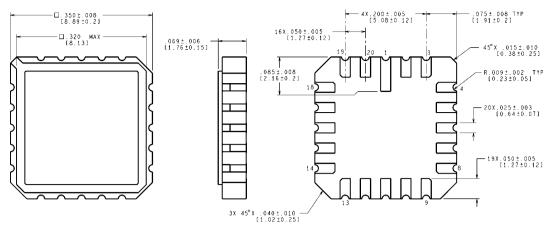

*Sets maximum V_{OUT}

20143602

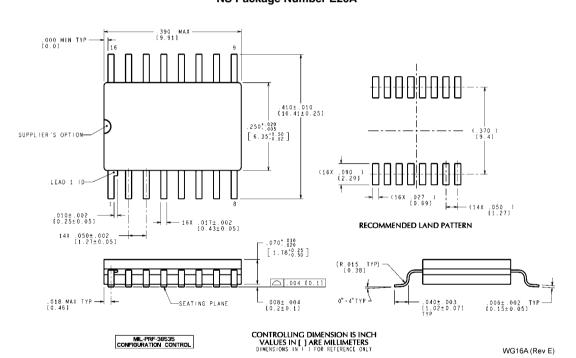

Revision History

Date Released	Revision	Section	Changes
03/17/06	Α	New Release to corporate format	5 MDS data sheets were consolidated into one
			corporate data sheet format. Clarified ΔI _{Adi} / Line
			versus ΔI _{Adi} / Load by separating the parameters in
			all of the tables. MNLM117-K Rev 1C1,
			MNLM117-X Rev 0A0, MNLM117-E Rev 0B1,
			MRLM117–X-RH Rev 2A0, MRLM117–K-RH Rev
			3A0 will be archived.
06/29/06	В	Features, Ordering Information Table, Rad	Deleted NSID LM117WGRQML, no longer
		Hard Electrical Section for H and WG	available. Added Available with Radiation
		packages and Notes	Guarantee, Low Dose NSID's to table
			5962R9951705VXA LM117HRLQMLV,
			5962R9951705VZA LM117WGRLQMLV, and
			reference to Note 11 and 12. Note 12 to Rad Hard
			Electrical Heading for H and WG packages. Note
			12 to Notes. Archive Revision A.
11/30/2010	С	Features, Ordering Table, Absolute	Added radiation info., Update with current device
		Ratings, LM117H, WG and K RH Drift	information and format, T0–39 Pkg weight, Vo
		Electrical Table	(Recov). Revision B will be Archived.
09/06/2011	D	Ordering Information, Absolute Ratings	Order Info: Added 'GW' NSIDS and SMD numbers.
			Abs Max Ratings: Added 'GW' Theta JA and Theta
			JC along with 'GW' weight. Revision C will be
			Archived.

Physical Dimensions inches (millimeters) unless otherwise noted


(TO-39) Metal Can Package NS Package Number H03A

TO-3 Metal Can Package (K) NS Package Number K02C


K02C (Rev E)

E20A (Rev F)

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

Ceramic Leadless Chip Carrier NS Package Number E20A

Ceramic SOIC NS Package Number WG16A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated