LM101AQML

LM101AQML Operational Amplifiers

Literature Number: SNOSAI0

LM101AQML Operational Amplifiers

General Description

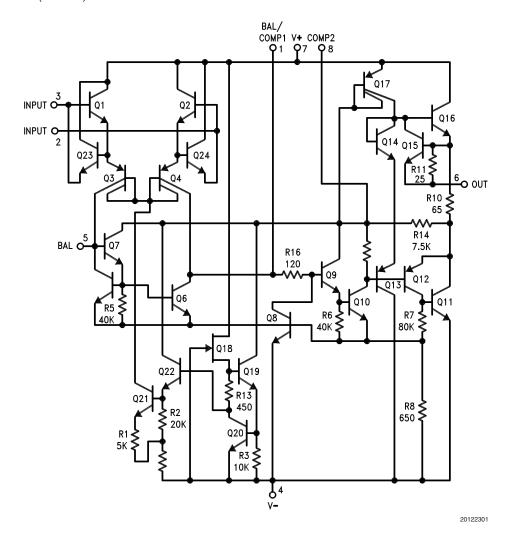
The LM101A is a general purpose operational amplifier which features improved performance over industry standards such as the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature
- · Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- · Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be

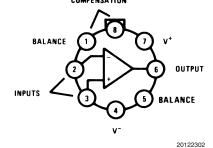
overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.


Features

- Available with radiation guarantee
- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10 V/µS as a summing amplifier

Ordering Information


NS Part Number	SMD Part Number	NS Package Number	Package Description
LM101AH/883		H08C	8LD Metal Can
LM101AJ/883		J08A	8LD CERDIP
LM101AW/883		W10A	10LD CERPACK
LM101AH-QMLV	5962-9951501VGA	H08C	8LD Metal Can
LM101AHLQMLV	5962L9951501VGA	H08C	8LD Metal Can
	50k rd(Si)		
LM101AHRQMLV	5962R9951501VGA	H08C	8LD Metal Can
	100k rd(Si)		
LM101AJLQMLV	5962L9951501VPA	J08A	8LD CERDIP
	50k rd(Si)		
LM101AJ-QMLV	5962-9951501VPA	J08A	8LD CERDIP
LM101AW-QMLV	5962-9951501VHA	W10A	10LD CERPACK
LM101AWLQMLV	5962L9951501VHA	W10A	10LD CERPACK
	50k rd(Si)		

Schematic (Note 11)

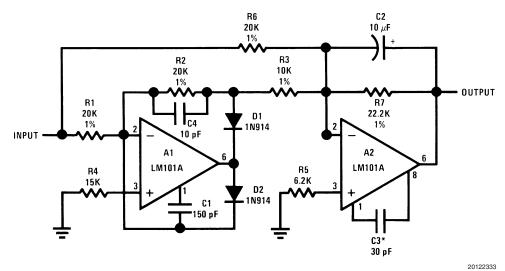
Connection Diagrams

(Top View)
Metal Can Package
COMPENSATION

See NS Package Number H08C Note: Pin 4 connected to case.

Dual-In-Line Package

BALANCE/ 1
COMPENSATION 2
INPUT 3
V - 4


See NS Package Number J08A

(Top View)

Connection Diagrams (Continued)

Ceramic Flatpack Package NC 1 0 9 NC BALANCE 3 COMP INPUT 4 V- 5 W OUTPUT 6 BALANCE See NS Package Number W10A

Fast AC/DC Converter

Note 1: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Absolute Maximum Ratings (Note 2) Supply Voltage ±22V Differential Input Voltage ±30V Input Voltage (Note 3) ±15V Output Short Circuit Duration Continuous Operating Ambient Temp. Range $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ 150°C T_J Max Power Dissipation at T_A = 25°C (Note 4) H-Package (Still Air) 750 mW (500 LF / Min Air Flow) 1200 mW J-Package 1000 mW (Still Air) (500 LF / Min Air Flow) 1500 mW W-Package (Still Air) 500mW (500 LF / Min Air Flow) 800mW Thermal Resistance θ_{JA} H-Package (Still Air) 165°C/W (500 LF / Min Air Flow) 89°C/W J-Package (Still Air) 128°C/W (500 LF / Min Air Flow) 75°C/W W-Package (Still Air) 233°C/W (500 LF / Min Air Flow) 155°C/W θ_{JC} (Typical) H-Package 39°C/W J-Package 26°C/W W-Package 26°C/W Storage Temperature Range $-65^{\circ}C \le T_A \le +150^{\circ}C$ Lead Temperature (Soldering, 10 sec.) 300°C

3000V

www.national.com 4

ESD Tolerance (Note 5)

Quality Conformance InspectionMil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55

LM101A 883 Electrical Characteristics DC Parameters

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage	$V_{CM} = -15V, R_{S} = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		$V_{CM} = 15V, R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV mV	2, 3
		$R_S = 50\Omega$	-3.0 3.0 -2.0 2.0 -3.0 3.0 -2.0 2.0 -3.0 3.0 -2.0 2.0 -3.0 3.0 -2.0 2.0 -3.0 3.0 -10 10 -20 20 -10 10 -20 20 -10 10 -20 20 -10 10 -20 75 -1.0 100 -1.0 75 -1.0 100 -1.0 75	2.0	mV	1	
				-3.0	3.0	mV	2, 3
		$V_{CC} = \pm 5V, R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV mV mV mV mV mV mV nA	2, 3
10	Input Offset Current	V _{CM} = -15V		-10	10	0 mV	1
				-20	20	nA	2, 3
		V _{CM} = 15V		-10	10	nA	1
				-20	20	nA	2, 3
				-10	10	nA	1
				-20	20	nA	2, 3
		$V_{CC} = \pm 5V$		-10	10	nA	1
				-20	20	nA nA	2, 3
⊧l _{IB}	Input Bias Current	V _{CM} = -15V		1.0	75	20 nA 10 nA 20 nA 75 nA 100 nA	1
				1.0	-3.0 3.0 mV -2.0 2.0 mV -3.0 3.0 mV -10 10 nA -20 20 nA -10 10 nA -10 10 nA -20 20 nA 1.0 75 nA 1.0 100 nA	2, 3	
		V _{CM} = 15V		-3.0 3.0 mV -2.0 2.0 mV -3.0 3.0 mV -2.0 2.0 mV -3.0 3.0 mV -2.0 2.0 mV -3.0 3.0 mV -10 10 nA -20 20 nA -10 10 nA -10 10 nA -20 75 nA 1.0 100 nA 1.0 75 nA 1.0 100 nA	1		
					nA	2, 3	
				1.0	75	nA	1
				1.0	100	nA	2, 3
		$V_{CC} = \pm 5V$		+		nA	1
				1.0	100	nA	2, 3
PSRR+	Power Supply Rejection Ratio	$+V_{CC}$ = +20V and +5V, $-V_{CC}$ =-20V, R _S =50 Ω		80		dB	1, 2, 3
PSRR-	Power Supply Rejection Ratio	$+V_{CC}$ = +20V, - V_{CC} = -20V and -5V, R_S =50 Ω		80		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	$-15V \le V_{CM} \le 15V, R_{S} = 50\Omega$		80		dB	1, 2, 3

LM101A 883 Electrical Characteristics (Continued)

DC Parameters (Continued)

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
I _{cc}	Supply Current				3.0	3.0 mA 2.5 mA 3.5 mA mV -4.0 mV -7.0 mA 45 mA 15 V V/mV V/mV V/mV V/mV V/mV V/mV V/mV V/	1
					2.5	mA	2
					3.5	mA	3
+V _{IO} Adj	Input Offset Voltage Adjust			4.0		mV	1, 2, 3
–V _{IO} Adj	Input Offset Voltage Adjust				-4.0	mV	1, 2, 3
+l _{os}	Short Circuit Current			-45	-7.0	mA	1, 2, 3
-l _{os}	Short Circuit Current			7.0	45	mA	1, 2, 3
V _I	Input Voltage Range	V _{CC} = ±20V	(Note 6)	-15	15	V	1, 2, 3
+A _{VS}	Large Signal Gain	$V_{CC} = \pm 15V, R_{S} = 0, R_{L}=2K\Omega,$		50		V/mV	4
		V _O =10V		25		V/mV	5, 6
-A _{VS}	Large Signal Gain	$V_{CC} = \pm 15V, R_{S} = 0, R_{L}=2K\Omega,$		50		V/mV	4
		V _O =-10V		25		V/mV	5, 6
R _I	Input Resistance		(Note 7)	1.5		MΩ	4
		tage Adjust arrent arrent arrent $V_{CC} = \pm 20V \qquad (Note \ 6)$ are $V_{CC} = \pm 15V, \ R_S = 0, \ R_L = 2K\Omega, \ V_O = 10V$ are $V_{CC} = \pm 15V, \ R_S = 0, \ R_L = 2K\Omega, \ V_O = -10V$ (Note 7) $R_L = 10K\Omega \qquad R_L = 10K\Omega, \ V_{CC} = \pm 15V \qquad R_L = 2K\Omega, \ R_L = 10K\Omega \qquad R_L $	0.5		MΩ	5, 6	
+V _{OP}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V	4, 5, 6			
		$R_L = 2K\Omega$		15		V	4, 5, 6
		$R_L = 10K\Omega$, $V_{CC} = \pm 15V$		12		V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CC} = \pm 15V$		10		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$			-16	V	4, 5, 6
		$R_L = 2K\Omega$			-15	V	4, 5, 6
		$R_L = 10K\Omega$, $V_{CC} = \pm 15V$			-12	V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CC} = \pm 15V$			-10	V	4, 5, 6

AC Parameters

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC}=\pm 20V,\ R_L=2K\Omega,\ A_V=1$

Symbol	Parameter	Conditions	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Notes	Min	May	Units	Sub-
			140103		0.2 V 0.2 V	Omis	groups																				
+SR	Slew Rate	$V_I = -5V$ to 5V			0.2	V/µS	7																				
-SR	Slew Rate	$V_I = 5V \text{ to } -5V$			0.2	V/µS	7																				
G _{BW}	Gain Bandwidth	$V_I = 50 \text{mV}_{RMS}, f = 20 \text{KHz}$			0.25	MHz	7																				

LM101A QML & RH Electrical Characteristics (Note 10)

DC Parameters

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC}=\pm 20V,\ V_{CM}=0V,\ R_S=50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
/ _{IO}	Input Offset Voltage	$+V_{CC} = 35V, -V_{CC} = -5V,$		-2.0	+2.0	mV	1
		V _{CM} = -15V		-3.0	+3.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-2.0	+2.0	mV	1
		$V_{CM} = +15V$		-3.0	+3.0	.0 mV .0 nA	2, 3
		V _{CM} = 0V		-2.0	+2.0	mV	1
				-3.0	+3.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-2.0	+2.0	mV	1
		$V_{CM} = 0V$		-3.0	+3.0	mV	2, 3
0	Input Offset Current	$+V_{CC} = 35V, -V_{CC} = -5V,$		-10	+10	nA	1, 2
		$V_{CM} = -15V, R_{S} = 100K\Omega$		-20	+20	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-10	+10	nA	1, 2
		$V_{CM} = +15V$, $R_S = 100K\Omega$		-20	+20	nA	3
		$V_{CM} = 0V, R_S = 100K\Omega$		-10	+10	nA	1, 2
				-20	+20	nA	3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-10	+10	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$		-20	+20	nA	3
:I _{IB}	Input Bias Current	$+V_{CC} = 35V, -V_{CC} = -5V,$		-0.1	75	nA	1, 2
		$V_{CM} = -15V, R_S = 100K\Omega$		-0.1	100	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-0.1	75	nA	1, 2
		$V_{CM} = +15V$, $R_S = 100K\Omega$		-0.1	100	nA	3
		$V_{CM} = 0V, R_S = 100K\Omega$		-0.1	75	nA	1, 2
				-0.1	100	nA	3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-0.1	75	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$		-0.1	100	nA	3
-PSRR	Power Supply Rejection Ratio	$+V_{CC} = 10V, -V_{CC} = -20V$		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3
PSRR	Power Supply Rejection Ratio	$+V_{CC} = 20V, -V_{CC} = -10V$		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3
CMRR	Common Mode Rejection Ratio	V_{CC} = ±35V to ±5V, V_{CM} = ±15V		80		dB	1, 2, 3
-V _{IO} Adj	Adjustment for Input Offset Voltage			4.0		mV	1, 2, 3
V _{IO} Adj	Adjustment for Input Offset Voltage				-4.0	mV	1, 2, 3
-l _{os}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ $t \le 25mS, V_{CM} = -15V$		-60		mA	1, 2, 3
l _{os}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ $t \le 25mS, V_{CM} = +15V$			+60	mA	1, 2, 3
	Power Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$			3.0	mA	1
					2.32	mA	2
					3.5	mA	3
Ν _{ΙΟ} / ΔΤ	Temperature Coefficient of	-55°C ≤ T _A ≤ +25°C	(Note 8)	-18	+18	μV/°C	2
	Input Offset Voltage	+25°C ≤ T _A ≤ +125°C	(Note 8)	-15	+15	uV/°C	3
Ι _{ΙΟ} / ΔΤ	Temperature Coefficient of	-55°C ≤ T _A ≤ +25°C	(Note 8)	-200	+200	pA/°C	2
PSRR PSRR MRR V _{IO} Adj V _{IO} Adj V _{IO} Adj V _{IO} Adj	Input Offset Current	+25°C ≤ T _A ≤ +125°C	(Note 8)	-100	+100	pA/°C	3

LM101A QML & RH Electrical Characteristics (Note 10) (Continued)

DC Parameters (Continued)

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC}=\pm 20V,\,V_{CM}=0V,\,R_S=50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
-A _{VS}	Large Signal (Open Loop)	$R_L = 2K\Omega$, $V_O = -15V$	(Note 9)	50		V/mV	4
-A _{VS} L +A _{VS} L +V _{OP} (Voltage Gain		(Note 9)	25		V/mV	5, 6
		$R_L = 10K\Omega$, $V_O = -15V$	(Note 9)	50		V/mV	4
			Notes Min Max Units gr -15V (Note 9) 50 V/mV (Note 9) 25 V/mV = -15V (Note 9) 50 V/mV (Note 9) 25 V/mV +15V (Note 9) 50 V/mV (Note 9) 25 V/mV = +15V (Note 9) 50 V/mV 2KΩ, (Note 9) 10 V/mV 4 = 10KΩ, (Note 9) 10 V/mV 4 = -20V +16 V 4 = -20V +15 V 4	5, 6			
+A _{VS}	Large Signal (Open Loop)	$R_L = 2K\Omega$, $V_O = +15V$	(Note 9)	50		V/mV	4
	Voltage Gain		(Note 9)	25		V/mV	5, 6
		$R_L = 10K\Omega$, $V_O = +15V$	(Note 9)	50		V/mV	4
			(Note 9)	25		V/mV	5, 6
A _{VS}	Large Signal (Open Loop) Voltage Gain	$V_{CC} = \pm 5V, R_L = 2K\Omega,$ $V_O = \pm 2V$	(Note 9)	10		V/mV	4,5, 6
		$V_{CC} = \pm 5V$, $R_L = 10K\Omega$, $V_O = \pm 2V$	(Note 9)	10		V/mV	4,5, 6
+V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = -20V$		+16		V	4,5, 6
		RL = $2K\Omega$, $V_{CM} = -20V$		+15		V	4,5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = 20V$			-16	V	4,5, 6
		$R_L = 2K\Omega$, $V_{CM} = 20V$			-15	V	4,5, 6

AC Parameters

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC}=\pm 20V,\ V_{CM}=0V,\ R_S=50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
+SR	Slew Rate	$A_V = 1, V_I = -5V \text{ to } +5V$		0.3		V/µS	7, 8A
				0.2		V/µS	8B
-SR	Slew Rate	$A_V = 1$, $V_I = +5V$ to -5V		0.3		V/µS	7, 8A
				0.2		V/µS	8B
TR _{TR}	Rise Time	$A_V = 1, V_I = 50mV$			800	nS	7, 8A, 8B
TRos	Overshoot	$A_V = 1, V_I = 50mV$			25	%	7
					35	%	8A, 8B
NI _{BB}	Noise Broadband	BW = 10Hz to 5KHz, $R_S = 0\Omega$			15	μV_{RMS}	7
NI _{PC}	Noise Popcorn	BW = 10Hz to 5KHz, $R_S = 100K\Omega$			80	μV_{PK}	7

DC Parameters Drift Values

The following conditions apply to all parameters, unless otherwise specified

 V_{CC} = ±20V, V_{CM} = 0V, R_S = 50 Ω

Delta calculations performed on QMLV devices at group B, Subgroup 5 only.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V_{IO}	Input Offset Voltage	$V_{CM} = 0V$		-0.5	0.5	mV	1
± I _{IB}	Input Bias Current	$V_{CM} = 0V, R_S = 100K\Omega$		-7.5	7.5	nA	1

Notes

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but do no guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

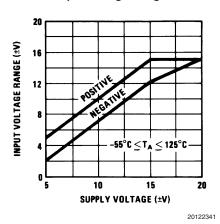
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A) / \theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 5: Human body model, 100 pF discharged through 1.5 k Ω .

Note 6: Parameter guaranteed by the input conditions of several DC parameters

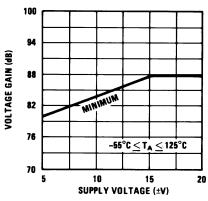
Note 7: Parameter guaranteed, not tested.

Note 8: Calculated parameter

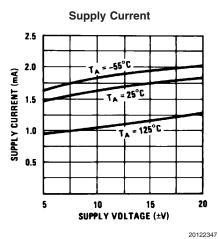

Note 9: Datalog reading of K = V/mV.

Note 10: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in Mil-Std-883. Method 1019

Note 11: Pin connections shown are for 8-pin packages.


Typical Performance Characteristics LM101A

Input Voltage Range



Output Swing 20 15 OUTPUT SWING (±V) 10 $\text{-55}^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{125}^{\circ}\text{C}$ 15 20 SUPPLY VOLTAGE (±V) 20122342

Voltage Gain

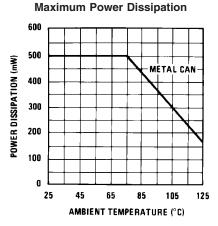
20122343

120 = -55°C VOLTAGE GAIN (4B) 100 TA = 125°C 90

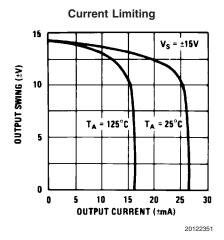
10

SUPPLY VOLTAGE (±V)

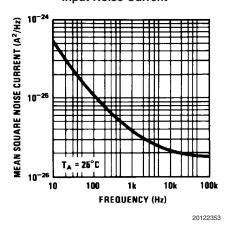
80

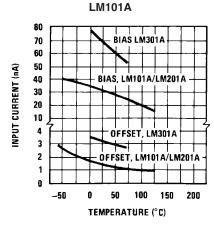

Voltage Gain

20122348

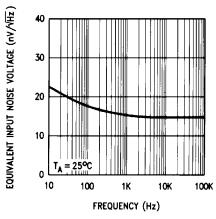

20

15

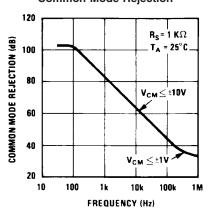

Typical Performance Characteristics LM101A (Continued)


20122349

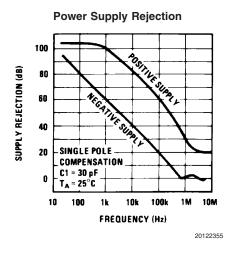
Input Noise Current

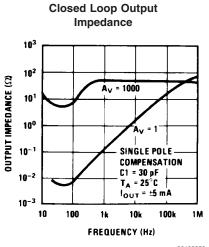


Input Current,


20122350

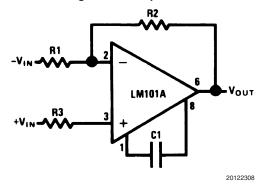
Input Noise Voltage


20122352


Common Mode Rejection

20122354

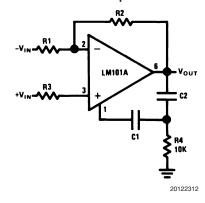
Typical Performance Characteristics LM101A (Continued)



20122356

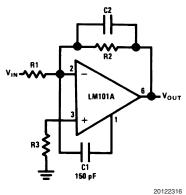
Typical Performance Characteristics for Various Compensation Circuits

(Note 11)

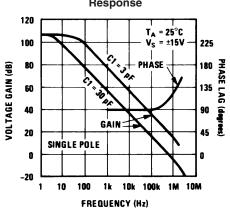

Single Pole Compensation

 $C1 \ge \frac{R1 C_S}{R1 + R2}$

C_S= 30 pF

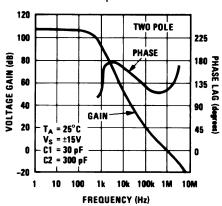

Two Pole Compensation

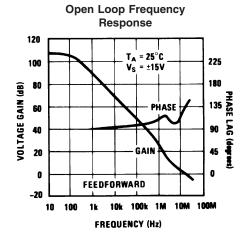
 $C1 \geq \frac{R1 \; C_S}{R1 \; + \; R2}$


 $C_S = 30 \text{ pF}$ C2 = 10 C1

Feedforward Compensation

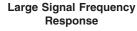
 $C2 = \frac{1}{2}$

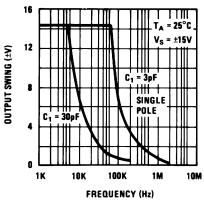

Open Loop Frequency Response


20122309

f_o= 3 MHz

Open Loop Frequency Response


20122313



20122317

Typical Performance Characteristics for Various Compensation Circuits

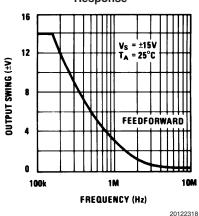
(Note 11) (Continued)

20122310

C1 = 30 pF C2 = 300 pF

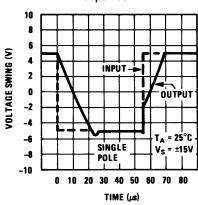
Large Signal Frequency

Response

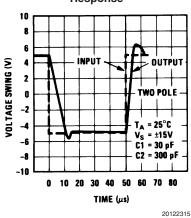

OUTPUT SWING (±V) TWO POLE

100k

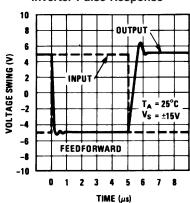
FREQUENCY (Hz) 20122314


1M

Large Signal Frequency Response

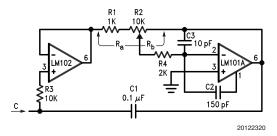

Voltage Follower Pulse Response

10k

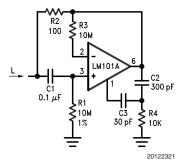


20122311

Voltage Follower Pulse Response


Inverter Pulse Response

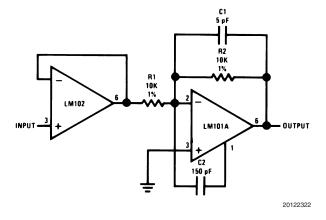
20122319


Typical Applications (Note 11)

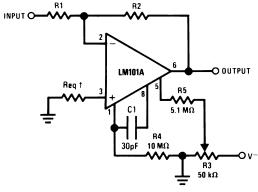
Variable Capacitance Multiplier

$$C = 1 + \frac{R_b}{R_a}C$$

Simulated Inductor

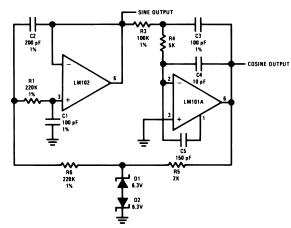


L ~ R1 R2 C1


 $R_S = R2$

 $R_P = R1$

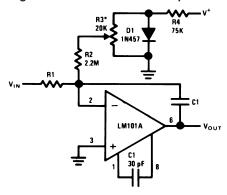
Fast Inverting Amplifier with High Input Impedance


Inverting Amplifier with Balancing Circuit

20122323

†May be zero or equal to parallel combination of R1 and R2 for minimum offset

Sine Wave Oscillator

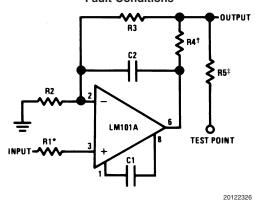


20122324

 $f_0 = 10 \text{ kHz}$

15

Integrator with Bias Current Compensation

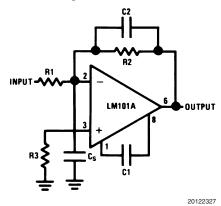


2012232

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over -55°C to +125°C temperature range.

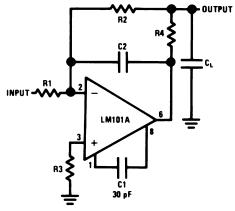
Application Hints (Note 11)

Protecting Against Gross Fault Conditions



*Protects input

†Protects output


 $\ddagger Protects \ output -- not \ needed \ when \ R4$ is used.

Compensating for Stray Input Capacitances or Large Feedback Resistor

 $C2 = \frac{R1 C_5}{R2}$

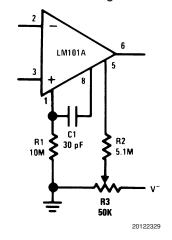
Isolating Large Capacitive Loads

20122328

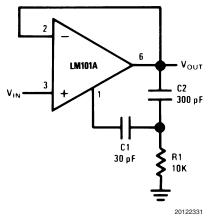
Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 $\mu F)$ should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

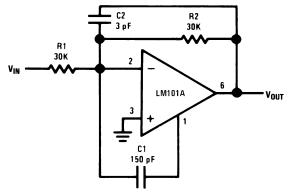

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V^+ and V^- will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 $k\Omega,$ stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.


Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

Typical Applications (Note 11)

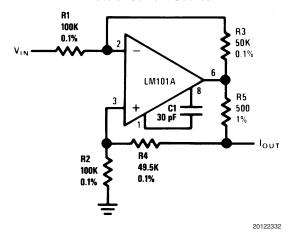
Standard Compensation and Offset Balancing Circuit


Fast Voltage Follower

Power Bandwidth: 15 kHz

Slew Rate: 1V/µs

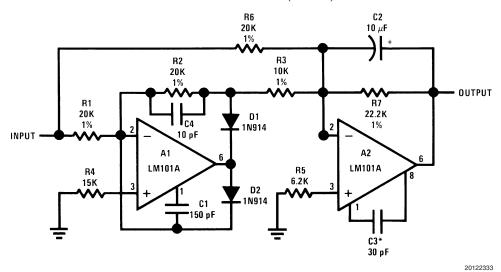
Fast Summing Amplifier


20122330

Power Bandwidth: 250 kHz Small Signal Bandwidth: 3.5 MHz

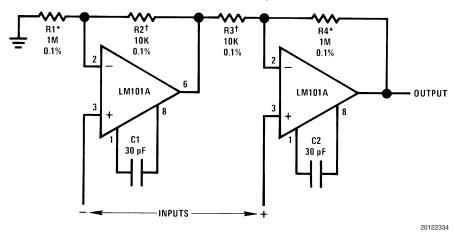
Slew Rate: 10V/µs

Typical Applications (Note 11) (Continued)


Bilateral Current Source

$$I_{OUT} = \frac{R3 V_{IN}}{R1 R5}$$

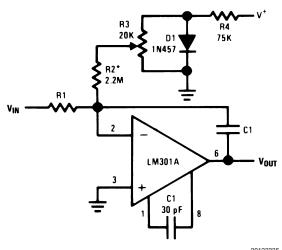
R3 = R4 + R5R1 = R2


Fast AC/DC Converter (Note 12)

Note 12: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

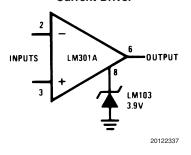
Typical Applications (Note 11) (Continued)

Instrumentation Amplifier

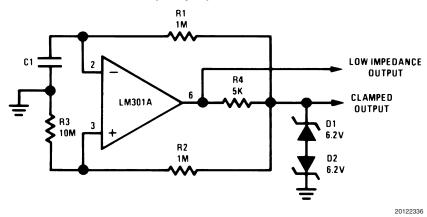


R1 = R4; R2 = R3

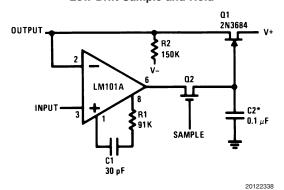
$$A_V = 1 + \frac{R1}{R2}$$


*,† Matching determines CMRR.

Integrator with Bias Current Compensation

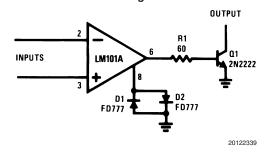

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over 0°C to +70°C temperature range.

Voltage Comparator for Driving RTL Logic or High Current Driver

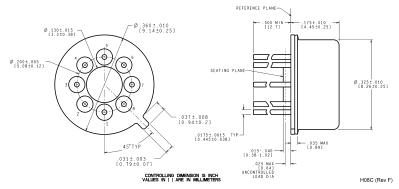


Typical Applications (Note 11) (Continued)

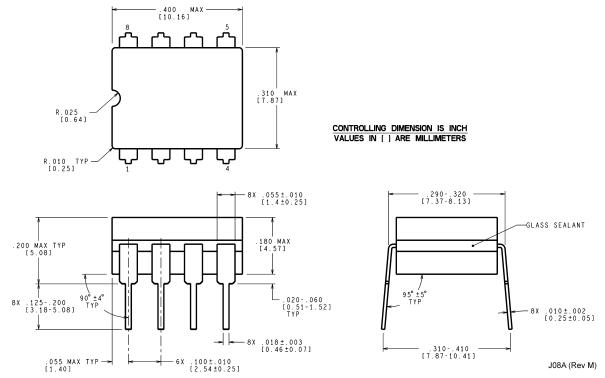
Low Frequency Square Wave Generator



Low Drift Sample and Hold

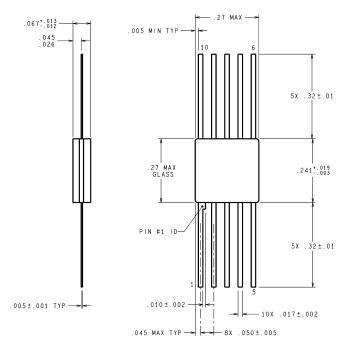

*Polycarbonate-dielectric capacitor

Voltage Comparator for Driving DTL or TTL Integrated Circuits



Revision History Section Date Revision Section Originator Changes Released 01/05/06 Α L. Lytle New Release to corporate format 2 MDS datasheets converted into one Corp. datasheet format. MNLM101A-X Rev 0A0 and MRLM101A-X-RH rev 1C2 MDS datasheets will be archived.

Physical Dimensions inches (millimeters) unless otherwise noted



Metal Can Package (H) NS Package Number H08C

Ceramic Dual-In-Line Package (J) NS Package Number J08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN INCHES

W10A (Rev H)

Ceramic Flatpack Package (W) NS Package Number W10A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated