Data sheet acquired from Harris Semiconductor SCHS245B

Features

- Buffered Inputs
- Typical Propagation Delay
- 4ns at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
- Exceeds 2kV ESD Protection per MIL-STD-883, Method 3015
- SCR-Latchup-Resistant CMOS Process and Circuit Design
- Speed of Bipolar FAST™/AS/S with Significantly Reduced Power Consumption
- Balanced Propagation Delays
- AC Types Feature 1.5V to 5.5V Operation and Balanced Noise Immunity at 30\% of the Supply
- $\pm 24 m A$ Output Drive Current
- Fanout to 15 FAST ${ }^{\text {TM }}$ ICs
- Drives 50Ω Transmission Lines

Description

The 'AC245 and 'ACT245 are octal-bus transceivers that utilize Advanced CMOS Logic technology. They are noninverting three-state bidirectional transceiver-buffers intended for two-way transmission from "A" bus to "B" bus or " B " bus to " A ". The logic level present on the direction input (DIR) determines the data direction. When the output enable input ($\overline{\mathrm{OE}}$) is HIGH, the outputs are in the high-impedance state.

Ordering Information

PART NUMBER	TEMP. RANGE ${ }^{\circ} \mathrm{C}$)	PACKAGE
CD54AC245F3A	-55 to 125	20 Ld CERDIP
CD74AC245E	-55 to 125	20 Ld PDIP
CD74AC245M	-55 to 125	20 Ld SOIC
CD74AC245SM	-55 to 125	20 Ld SSOP
CD54ACT245F3A	-55 to 125	20 Ld CERDIP
CD74ACT245E	-55 to 125	20 Ld PDIP
CD74ACT245M	-55 to 125	20 Ld SOIC
CD74ACT245SM	-55 to 125	20 Ld SSOP
NOTES:		

1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
2. Wafer and die for this part number is available which meets all electrical specifications. Please contact your local TI sales office or customer service for ordering information.

Pinout

DIR 1	20 VCC
A0 2	19 OE
A1 3	18 B0
A2 4	$17 \mathrm{B1}$
A3 5	16 B2
A4 6	15 B3
A5 7	14 B4
A6 8	$13 \mathrm{B5}$
A7 9	$12 \mathrm{B6}$
GND 10	11 B7

Functional Diagram

TRUTH TABLE

CONTROL INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Isolation

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Irrelevant
To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ resistors.

Absolute Maximum Ratings	
DC Supply Voltage, V_{CC}	-0.5V to 6V
DC Input Diode Current, I_{K}	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 50 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, Io	
DC $\mathrm{V}_{\text {CC }}$ or Ground Current, ICC or $\mathrm{I}_{\text {GND }}$ (Note 3)	$\pm 100 \mathrm{~mA}$
Operating Conditions	
	${ }^{-55}{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Supply Voltage Range, $\mathrm{V}_{\text {CC }}$ (Note 4)	
AC Types.	.1.5V to 5.5 V
ACT Types	.4.5V to 5.5V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \mathrm{VV}$ to V_{CC}	
AC Types, 1.5 V to 3 V	50ns (Max)
AC Types, 3.6 V to 5.5 V .	20ns (Max)
ACT Types, 4.5 V to 5.5 V .	10ns (Max)

Thermal Information

Thermal Resistance (Typical, Note 5) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
E Package . 69

M Package
58
SM Package
70
Maximum Junction Temperature (Plastic Package) 150 ${ }^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

Operating Conditions
Temperature Range, T_{A}. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

3. For up to 4 outputs per device, add $\pm 25 \mathrm{~mA}$ for each additional output.
4. Unless otherwise specified, all voltages are referenced to ground.
5. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & V_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	MAX	MIN	MAX	MIN	MAX	

AC TYPES

High Level Input Voltage	V_{IH}	-	-	1.5	1.2	-	1.2	-	1.2	-	V
				3	2.1	-	2.1	-	2.1	-	V
				5.5	3.85	-	3.85	-	3.85	-	V
Low Level Input Voltage	VIL	-	-	1.5	-	0.3	-	0.3	-	0.3	V
				3	-	0.9	-	0.9	-	0.9	V
				5.5	-	1.65	-	1.65	-	1.65	V
High Level Output Voltage	V_{OH}	V_{IH} or V_{IL}	-0.05	1.5	1.4	-	1.4	-	1.4	-	V
			-0.05	3	2.9	-	2.9	-	2.9	-	V
			-0.05	4.5	4.4	-	4.4	-	4.4	-	V
			-4	3	2.58	-	2.48	-	2.4	-	V
			-24	4.5	3.94	-	3.8	-	3.7	-	V
			-75 (Note 6, 7)	5.5	-	-	3.85	-	-	-	V
			-50 (Note 6, 7)	5.5	-	-	-	-	3.85	-	V

DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{0}(\mathrm{~mA})$		MIN	MAX	MIN	MAX	MIN	MAX	
Low Level Output Voltage	V_{OL}	V_{IH} or V_{IL}	0.05	1.5	-	0.1	-	0.1	-	0.1	V
			0.05	3	-	0.1	-	0.1	-	0.1	V
			0.05	4.5	-	0.1	-	0.1	-	0.1	V
			12	3	-	0.36	-	0.44	-	0.5	V
			24	4.5	-	0.36	-	0.44	-	0.5	V
			$\begin{gathered} 75 \\ (\text { Note 6, 7) } \end{gathered}$	5.5	-	-	-	1.65	-	-	V
			$\begin{gathered} 50 \\ \text { (Note 6, 7) } \end{gathered}$	5.5	-	-	-	-	-	1.65	V
Input Leakage Current	1	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	5.5	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Three-State Leakage Current	loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } G N D \end{aligned}$	-	5.5	-	± 0.5	-	± 5	-	± 10	$\mu \mathrm{A}$
Quiescent Supply Current MSI	${ }^{\text {c C }}$	$\mathrm{V}_{\mathrm{CC}} \text { or }$ GND	0	5.5	-	8	-	80	-	160	$\mu \mathrm{A}$

ACT TYPES

High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	2	-	2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage	V_{OH}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	-0.05	4.5	4.4	-	4.4	-	4.4	-	V
			-24	4.5	3.94	-	3.8	-	3.7	-	V
			$\begin{gathered} -75 \\ (\text { Note } 6,7) \end{gathered}$	5.5	-	-	3.85	-	-	-	V
			(Note 6, 7)	5.5	-	-	-	-	3.85	-	V
Low Level Output Voltage	V_{OL}	$\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	0.05	4.5	-	0.1	-	0.1	-	0.1	V
			24	4.5	-	0.36	-	0.44	-	0.5	V
			$\begin{gathered} 75 \\ \text { (Note 6, 7) } \end{gathered}$	5.5	-	-	-	1.65	-	-	V
			50 (Note 6, 7)	5.5	-	-	-	-	-	1.65	V
Input Leakage Current	I	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	-	5.5	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Three-State or Leakage Current	l OZ	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ \text { or } \mathrm{GND} \end{gathered}$	-	5.5	-	± 0.5	-	± 5	-	± 10	$\mu \mathrm{A}$
Quiescent Supply Current MSI	$I_{\text {CC }}$	$V_{C C} \text { or }$ GND	0	5.5	-	8	-	80	-	160	$\mu \mathrm{A}$
Additional Supply Current per Input Pin TTL Inputs High 1 Unit Load	$\Delta^{\text {CC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \end{aligned}$	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	2.4	-	2.8	-	3	mA

NOTES:
6. Test one output at a time for a 1 -second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
7. Test verifies a minimum 50Ω transmission-line-drive capability at $85^{\circ} \mathrm{C}, 75 \Omega$ at $125^{\circ} \mathrm{C}$.

ACT Input Load Table

INPUT	UNIT LOAD
An, Bn	0.83
$\overline{\mathrm{OE}}$	0.64
DIR	0.25

NOTE: Unit load is $\Delta \mathrm{I}_{\mathrm{CC}}$ limit specified in DC Electrical Specifications Table, e.g., 2.4mA max at $25^{\circ} \mathrm{C}$.

Switching Specifications Input $t_{r}, t_{f}=3 n s, C_{L}=50 p F$ (Worst Case)

PARAMETER	SYMBOL	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			${ }_{-55}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
AC TYPES									
Propagation Delay, Data to Output	${ }_{\text {tPLH, }}$ tPHL	1.5	-	-	96	-	-	106	ns
		$\begin{gathered} 3.3 \\ \text { (Note 9) } \end{gathered}$	3.2	-	10.8	3	-	11.9	ns
		$\begin{gathered} 5 \\ (\text { Note 10) } \end{gathered}$	2.2	-	7.7	2.1	-	8.5	ns
Propagation Delay, Output Disable to Output	tPLZ, tPHZ	1.5	-	-	159	-	-	175	ns
		3.3	4.7	-	15.9	4.4	-	17.5	ns
		5	3.7	-	12.7	3.5	-	14	ns
Propagation Delay, Output Enable to Output	${ }_{\text {tPZL, }}$ tPZH	1.5	-	-	159	-	-	175	ns
		3.3	5.6	-	19	5.3	-	21	ns
		5	3.7	-	12.7	3.5	-	14	ns
Minimum (Valley) V_{OH} During Switching of Other Outputs (Output Under Test Not Switching)	VOHV See Figure 1	5	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	V
Maximum (Peak) V_{OL} During Switching of Other Outputs (Output Under Test Not Switching)	$V_{\text {OLP }}$ See Figure 1	5	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	V
Three-State Output Capacitance	Co_{0}	-	-	15	-	-	15	-	pF
Input Capacitance	C_{1}	-	-	-	10	-	-	10	pF
Power Dissipation Capacitance	$\begin{aligned} & \text { CPD }^{2} \\ & \text { (Note 11) } \end{aligned}$	-	-	57	-	-	57	-	pF
ACT TYPES									
Propagation Delay, Data to Output	${ }^{\text {tPLH }}$, tPHL	$\begin{gathered} 5 \\ (\text { Note 10) } \end{gathered}$	2.7	-	9.1	2.5	-	10	ns
Propagation Delay, Output Disable to Output	${ }_{\text {tPLZ }}$, tPHZ	5	3.7		12.7	3.5		14	ns
Propagation Delay, Output Enable to Output	${ }_{\text {tPZL, }}$ tPZH	5	3.8		13.1	3.6		14.4	ns
Minimum (Valley) V_{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V_{OHV} See Figure 1	5	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{gathered} 4 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	V
Maximum (Peak) $V_{\text {OL }}$ During Switching of Other Outputs (Output Under Test Not Switching)	$V_{\text {OLP }}$ See Figure 1	5	-	$\begin{gathered} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{array}{r} 1 \text { at } \\ 25^{\circ} \mathrm{C} \end{array}$	-	V

Switching Specifications Input $t_{r}, t_{f}=3 n s, C_{L}=50 p F$ (Worst Case) (Continued)

PARAMETER	SYMBOL	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Three-State Output Capacitance	C_{O}	-	-	15	-	-	15	-	pF
Input Capacitance	CI	-	-	-	10	-	-	10	pF
Power Dissipation Capacitance	$\begin{gathered} \mathrm{C}_{\text {PD }} \\ \text { (Note 11) } \end{gathered}$	-	-	57	-	-	57	-	pF

NOTES:
8. Limits tested 100%
9. 3.3 V Min is at 3.6 V , Max is at 3 V .
10. 5 V Min is at 5.5 V , Max is at 4.5 V .
11. $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power consumption per channel.
$A C: P_{D}=V_{C C}{ }^{2} f_{i}\left(C_{P D}+C_{L}\right)$
$A C T: P_{D}=V_{C C}{ }^{2} f_{i}\left(C_{P D}+C_{L}\right)+V_{C C} \Delta I_{C C}$ where $f_{i}=$ input frequency, $C_{L}=$ output load capacitance, $V_{C C}=$ supply voltage.

NOTES:
12. Input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, SKEW 1 ns .
13. R.F. fixture with 700 MHz design rules required. IC should be soldered into test board and bypassed with $0.1 \mu \mathrm{~F}$ capacitor. Scope and probes require 700 MHz bandwidth.

FIGURE 1. SIMULTANEOUS SWITCHING TRANSIENT WAVEFORMS

NOTE:
14. For $A C$ Series only: When $V_{C C}=1.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$.

FIGURE 2. THREE-STATE PROPAGATION DELAY TIMES AND TEST CIRCUIT

FIGURE 3. PROPAGATION DELAY TIMES

NOTE: For $A C$ Series Only: When $V_{C C}=1.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$.

	AC	ACT
Input Level	V_{CC}	3 V
Input Switching Voltage, V_{S}	$0.5 \mathrm{~V}_{\mathrm{CC}}$	1.5 V
Output Switching Voltage, V_{S}	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$

FIGURE 4. PROPAGATION DELAY TIMES

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

