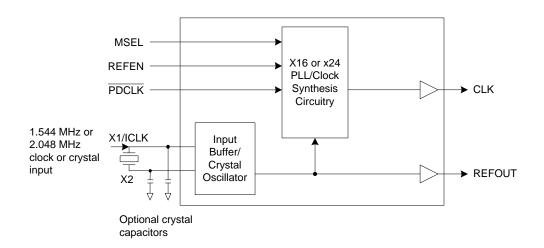


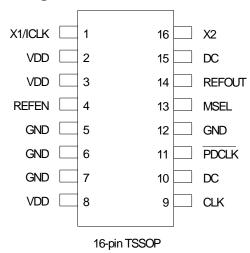
T1/E1 CLOCK MULTIPLIER

ICS548-05

Description


The ICS548-05 is a low-cost, low-jitter, high-performace clock synthesizer designed to produce x16 and x24 clocks from T1 and E1 frequencies. Using IDT's patented analog/digital Phase- Locked Loop (PLL) techniques, the device uses a crystal or clock input to synthesize popular communications frequencies. Power down modes allow the chip to turn off completely, or the PLL and clock output to be turned off separately.

IDT manuafactures the largest variety of communications clock synthesizers for all applications. Consult IDT to eliminate VCXO's, crystals, and oscillators from your board.


Features

- Packaged in 16-pin TSSOP
- Available in Pb (lead) free package
- Ideal for telecom/datacom chips
- Replaces oscillators
- 3.3 V or 5 V operation
- Uses a crystal or clock input
- Produces 24.704, 37.056, 32.768, or 49.152 MHz
- Includes Power-down features
- Advanced, low-power, sub-micron CMOS process
- See also the MK2049-34 for generating
- Industrial temperature range available

Block Diagram

Pin Assignment

Output Clock Selection Table

MSEL	Input (MHz)	CLK (MHz)
Pin 13	Pins 1, (16)	Pln 9
0	1.544	24.704
1	1.544	37.056
0	2.048	32.768
1	2.048	49.152

Power Down Clock Selection Table

REFEN	PDCLK	Power Down Selection Mode
Pin 4	Pln 11	
0	0	The entire chip is off.
0	1	PLL and clock output run, REFOUT low.
1	0	REFOUT running, PLL off, CLK low.
1	1	All running.

Key: 0 = connect directly to GND; 1 = connect directly to VDD

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description	
1	X1/ICLK	ΧI	Crystal connection. Connect this pin to a crystal or clock input.	
2, 3, 8	VDD	Power	Connect to +3.3 V or +5 V. All VDD's must be the same.	
4	REFEN	Input	Reference Clock Enable. See table above. Connect to GND for best jitter/phase noise.	
5, 6, 7, 12	GND	Power	Connect to ground.	
9	CLK	Output	Clock output set by input status of MSEL. See table above.	
10, 15	DC		Don't Connect. Do not connect these pins to anything.	
11	PDCLK	Input	Power down clock. See table above.	
13	MSEL	Input	Multiplier select pin. Selects x16 when low, x24 when high.	
14	REFOUT	Output	Buffered reference output clock. Controlled by REFEN.	
16	X2	XO	Crystal connection. Connect this pin to a crystal or leave unconnected for a clock.	

Key: XI, XO = crystal connections; the in put pin MSEL must be tied directly to VDD or GND.

For a clock input, connect the input X1 and leave X2 unconnected (floating).

Application Information

Series Termination Resistor

Clock output traces should use series termination. To series terminate a 50Ω trace (a commonly used trace impedance), place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω

Decoupling Capacitors

As with any high performance mixed-signal IC, the ICS548-05 must be isolated from system power supply noise to perform optimally.

Decoupling capacitors of $0.01\mu F$ should be connected between each VDD and GND on pins 3 and 5, as close to the device as possible Other VDD's can be connected to pin 3. If reFOUT is not used, then REFEN should be connected directly to ground.

Crystal Load Capacitors

If a crystal is used, the device crystal connections should include pads for capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. To reduce possible noise pickup, use very short PCB traces (and no vias) been the crystal and device.

The value of the load capacitors can be roughly determined by the formula $C = 2(C_L - 6)$ where C is the load capacitor connected to X1 and X2, and C_L is the specified value of the load capacitance for the crystal. A typical crystal C_L is 18pF, so C = 2(18 - 6) = 24pF. Because these capacitors adjust the stray capacitance of the PCB, check the output frequency using your final layout to see if the value of C should be changed. For a clock input, leave X2 unconnected (floating).

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1) Each $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 2) The external crystal should be mounted next to the device with short traces. The X1 and X2 traces should not be routed next to each other with minimum spaces, instead they should be separated and away from other traces.
- 3) To minimize EMI and obtain the best signal integrity, the 33Ω series termination resistor should be placed close to the clock output.
- 4) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (the ferrite bead and bulk decoupling capacitor can be mounted on the back). Other signal traces should be routed away from the ICS548-05. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS548-05. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature (commercial)	0 to +70° C
Ambient Operating Temperature (industrial)	-40 to +85° C
Storage Temperature	-65 to +150° C
Junction Temperature	125° C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.15		5.5	V

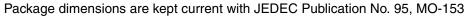
DC Electrical Characteristics

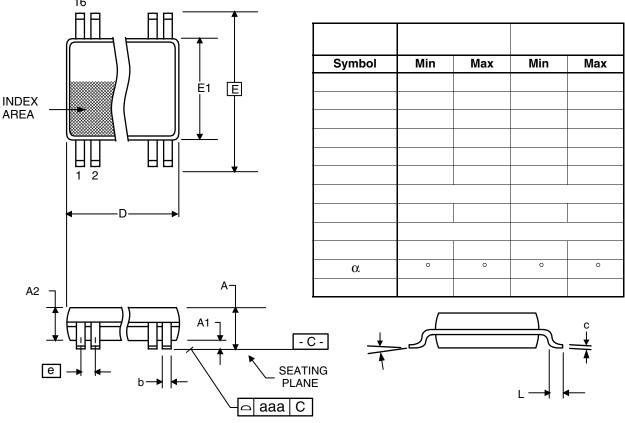
Unless stated otherwise, VDD = 3.3 V, Ambient Temperature 0 to +70° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Core Operating Voltage	VDD		3.15		5.5	V
Input High Voltage	V _{IH}	X1/ICLK pin, clock input only	(VDD/2)+1	VDD/2		V
Input Low Voltage	V _{IL}	X1/ICLK pin, clock input only		VDD/2	(VDD/2)-1	V
Input High Voltage	V _{IH}		2			V
Input Low Voltage	V _{IL}				0.8	V
Output High Voltage	V _{OH}	I _{OH} = -4 mA	2.4			V
Output High Voltage	V _{OH}	CMOS level, I _{OH} = -4 mA	VDD-0.4			V
Output Low Voltage	V _{OL}	I _{OL} = 4 mA			0.4	V
Supply Current	IDD	No Load		5		mA
Power Down Supply Current	IDDPD	No Load		1		μΑ

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Short Circuit Current	Ios	CLK output		±50		mA
Input Capacitance		MSEL, PDCLK, REFEN		7		pF
Frequency Synthesis Error		Both selections			0	ppm

AC Electrical Characteristics


Unless stated otherwise, **VDD = 3.3 V**, Ambient Temperature 0 to +70°C


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Crystal or Clock Frequency				1.544 or 2.048		MHz
Output Clock Rise Time	t _{OR}	20% to 80%			1.5	ns
Output Clock Fall Time	t _{OF}	80% to 20%			1.5	ns
Output Clock Rise Time	t _{OR}	20% to 80%, TA = -40 to +85° C			1.7	ns
Output Clock Fall Time	t _{OF}	80% to 20%, TA = -40 to +85° C			1.7	ns
Output Clock Duty Cycle	t _{OD}	At VDD/2	40	50	60	%
Start-up Time		VDD = 3.3 V to CLK stable			10	ms
Maximum Absolute Jitter, short term				±100		ps
Maximum Absolute Jitter, short term		TA = -40 to +85° C		±150		ps
One Sigma Jitter				25		ps

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		78		° C/W
Ambient	θ_{JA}	1 m/s air flow		70		° C/W
	θ_{JA}	3 m/s air flow		68		° C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			37		° C/W

Package Outline and Package Dimensions (16-pin TSSOP)

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
548G-05	548G-05	Tubes	16-pin TSSOP	0 to +70° C
548G-05T	548G-05	Tape and Reel	16-pin TSSOP	0 to +70° C
548G-05LF	548G05LF	Tubes	16-pin TSSOP	0 to +70° C
548G-05LFT	548G05LF	Tape and Reel	16-pin TSSOP	0 to +70° C
548G-05I	548G-05I	Tubes	16-pin TSSOP	-40 to +85° C
548G-05IT	548G-05I	Tape and Reel	16-pin TSSOP	-40 to +85° C
548G-05ILF	548G05IL	Tubes	16-pin TSSOP	-40 to +85° C
548G-05ILFT	548G05IL	Tape and Reel	16-pin TSSOP	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, IDT assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/