NC7SZ175

TinyLogic UHS D-Type Flip-Flop with Asynchronous Clear

Description

The NC7SZ175 is a single positive edge-triggered D-type CMOS Flip-Flop with Asynchronous Clear from ON Semiconductor's Ultra High Speed Series of TinyLogic in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage. This single flip-flop will store the state of the D input that meets the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. A LOW input to Clear sets the Q output to LOW level. The Clear input is independent of clock.

Features

- Space Saving SC70 6-Lead Package
- Ultra Small MicroPakTM Leadless Package
- Ultra High Speed: t_{PD} 2.6 ns Typ into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches the Performance of LCX when Operated at 3.3 V V_{CC}
- Power Down High Impedance Inputs / Output
- Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

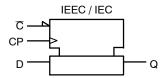
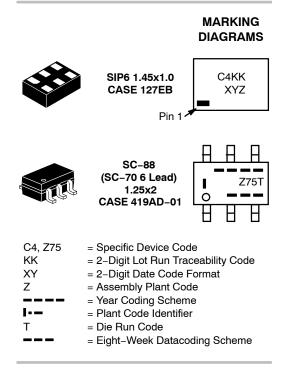



Figure 1. Logic Symbol

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Connection Diagrams

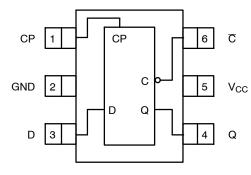
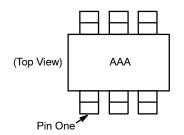



Figure 2. SC70 (Top View)

AAA represents Product Code Top Mark – see ordering code.

NOTE: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Figure 3. Pin 1 Orientation

PIN DESCRIPTIONS

Pin Name	Description
D	Data Input
СР	Clock Pulse Input
C	Clear Input
Q	Flip–Flop Output

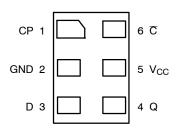


Figure 4. MicroPak (Top Through View)

FUNCTION TABLE	
----------------	--

	Inputs				
СР	D C		Q		
	L	Н	L		
	Н	Н	Н		
~_	Х	Н	Qn		
х	х	L	L		

H = HIGH Logic Level L = LOW Logic Level

Qn = No Change in Data X = Immaterial

ABSOLUTE MAXIMUM RATINGS

Symbol	Param	eter	Min	Мах	Unit
V _{CC}	Supply Voltage	Supply Voltage			V
V _{IN}	DC Input Voltage		-0.5	+6.5	V
V _{OUT}	DC Output Voltage		-0.5	+6.5	V
Ι _{ΙΚ}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Source / Sink Current		-	±50	mA
I_{CC} / I_{GND}	DC V _{CC} / GND Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature under Bias		-	150	°C
ΤL	Junction Lead Temperature (Soldering, 10 Seconds)		-	260	°C
PD	Power Dissipation @ +85°C	SC70	-	190	mW
		MicroPak	-	327	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
t _r , t _f	Input Rise and Fall Time	V_{CC} = 1.8 V, 2.5 V ±0.2 V	0	20	ns/V
		V_{CC} = 3.3 V ±0.3 V	0	10	
		V_{CC} = 5.5 V ±0.5 V	0	5	
T _A	Operating Temperature		-40	+85	°C
θ_{JA}	Thermal Resistance	SC70-5	-	659	°C/W
		MicroPak	-	382	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float.

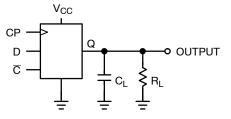
DC ELECTICAL CHARACTERISTICS

					Τ ₄	T _A = +25°C			T _A = −40 to +85°C			
Symbol	Parameter	V _{CC} (V)	Co	nditions	Min	Тур	Max	Min	Max	Unit		
V _{IH}	HIGH Level Input	1.65 to 1.95			0.65 V _{CC}	-	-	0.65 V _{CC}	-	V		
	Control Voltage	2.3 to 5.5			0.7 V _{CC}	-	-	0.7 V _{CC}	-	1		
VIL	LOW Level Input	1.65 to 1.95			-	-	0.35 V _{CC}	_	0.35 V _{CC}	V		
	Control Voltage	2.3 to 5.5	1		_	-	0.3 V _{CC}	_	0.3 V _{CC}	1		
V _{OH}	HIGH Level Control	1.65	$V_{IN} = V_{IH}$	I _{OH} = -100 μA	1.55	1.65	-	1.55	-	V		
	Output Voltage	1.8	or V _{IL}		1.7	1.8	-	1.7	-	1		
		2.3			2.2	2.3	-	2.2	-	1		
		3.0			2.9	3.0	-	2.9	-	1		
		4.5			4.4	4.5	-	4.4	-	1		
		1.65		I _{OH} = -4 mA	1.24	1.52	-	1.29	-	1		
		2.3		I _{OH} = -8 mA	1.9	2.15	-	1.9	-	1		
		3.0		I _{OH} = -16 mA	2.4	2.8	-	2.4	-	1		
		3.0	_	I _{OH} = -24 mA	2.3	2.68	-	2.3	-			
		4.5]]]	I _{OH} = -32 mA	3.8	4.2	-	3.8	-
V _{OL}	LOW Level Control	1.65	$V_{IN} = V_{IL}$	I _{OL} = 100 μA	-	0.0	0.1	-	0.1	V		
	Output Voltage	1.8	or V _{IH}		-	0.0	0.1	-	0.1	1		
		2.3			-	0.0	0.1	-	0.1	1		
		3.0					-	0.0	0.1	-	0.1	1
		4.5				-	0.0	0.1	-	0.1	1	
		1.65		$I_{OL} = 4 \text{ mA}$	-	0.08	0.24	-	0.24			
		2.3		I _{OL} = 8 mA	-	0.10	0.3	-	0.3			
		3.0		I _{OL} = 16 mA	-	0.15	0.4	-	0.4			
		3.0		I _{OL} = 24 mA	-	0.22	0.55	-	0.55	1		
		4.5		I _{OL} = 32 mA	-	0.22	0.55	-	0.55	1		
I _{IN}	Input Leakage Current	1.65 to 5.5	$0 \le V_{IN} \le 5$	5.5 V	-	-	±0.1	-	±1.0	μA		
I _{OFF}	Power Off Leakage Current	0.0	V _{IN} or V _{OL}	_{JT} = 5.5 V	-	-	1.0	-	10	μA		
ICC	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5 \	/, GND	-	-	1.0	-	10.0	μΑ		

AC ELECTRICAL CHARACTERISTICS

					T _A = +25°C	;	$T_A = -40$ to +85°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
f _{MAX}	Maximum Clock Frequency	1.65	$C_{L} = 50 \text{ pF},$	-	-	-	100	-	MHz
	(Figures 5, 8)	1.8 $R_{L} = 500 \Omega$		-	-	100	-		
		2.5 ±0.2			-	-	125	-	
		3.3 ±0.3		-	-	-	150	-	
		5.0 ±0.5		-	-	-	175	-	
t _{PLH} , t _{PHL}	Propagation Delay CP to Q	1.65	C _L = 15 pF,	-	9.8	15.0	-	16.5	ns
	(Figures 5, 7)	1.8	R _L = 1 MΩ	-	6.5	10.0	-	11.0	
		2.5 ±0.2		-	3.8	6.5	-	7.0	
		3.3 ±0.3		-	2.8	4.5	-	5.0	
		5.0 ±0.5		-	2.2	3.5	-	3.8	1
		3.3 ±0.3	C _L = 50 pF,	-	3.4	5.5	-	6.2	1
		5.0 ±0.5	R _L = 500 Ω	_	2.6	4.0	-	4.7	1
t _{PHL}	Propagation Delay \overline{C} to Q	1.65	C _L = 15 pF,	_	9.8	13.5	-	15.0	ns
	(Figures 5, 7)	1.8	R_{L} = 1 MΩ	_	6.5	9.0	-	10.0	
		2.5 ±0.2	-	_	3.8	6.0	-	6.4	-
		3.3 ±0.3	-	-	2.8	4.3	-	4.6	
		5.0 ±0.5		_	2.2	3.2	-	3.5	
		3.3 ±0.3	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	_	3.4	5.3	-	5.8	
		5.0 ±0.5		-	2.7	4.0	-	4.5	
t _S	Setup Time, CP to D	2.5 ±0.2	C _L = 50 pF,	-	-	-	2.5	-	ns
	(Figures 5, 8)	3.3 ±0.3	R _L = 500 Ω	-	-	-	2.0	-	
		5.0 ±0.5	-		-	-	1.5	-	
t _H	Hold Time, CP to D	2.5 ±0.2	C _L = 50 pF,	-	-	-	1.5	-	ns
	(Figures 5, 8)	3.3 ±0.3	R _L = 500 Ω	-	-	-	1.5	-	
		5.0 ±0.5	-	_	-	-	1.5	-	
t _W	Pulse Width, CP	2.5 ±0.2	C _L = 50 pF,	-	-	-	3.0	-	ns
	(Figures 5, 8)	3.3 ±0.3	$R_{L} = 500 \Omega$	-	-	-	2.8	-	
		5.0 ±0.5	-	_	-	-	2.5	-	
	Pulse Width, C	2.5 ±0.2	Clock HIGH	-	-	-	3.0	-	ns
	(Figures 5, 8)	3.3 ±0.3	or LOW C _L = 50 pF,	_	-	-	2.8	-	1
		5.0 ±0.5	$R_L = 500 \Omega$	-	-	-	2.5	_	1
t _{rec}	Recovery Time, \overline{C} to CP	2.5 ±0.2	C _L = 50 pF,	-	-	-	1.0	_	ns
	(Figures 5, 8)	3.3 ±0.3	$R_{L} = 500 \Omega$	-	-	-	1.0	_	
		5.0 ±0.5	1	_	_	_	1.0	_	1

NC7SZ175


CAPACITANCE (T_A = +25°C, f = 1 MHz)

Symbol	Parameter	Condition	Тур	Max	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_{IN} = 0 V or V_{CC}	3	_	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC}	4	-	pF
C _{PD}	Power Dissipation Capacitance (Note 2)	V _{CC} = 3.3 V V _{CC} = 5.0 V	10 12		pF

C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 6)

 C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static)$.

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_W = 500 ns.

Figure 5. AC Test Circuit

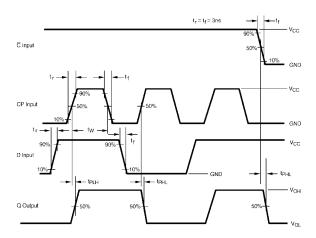


Figure 7. AC Waveforms

DEVICE ORDERING INFORMATION

 $\begin{array}{l} CP \mbox{ Input} = AC \mbox{ Waveform; } t_r = t_f = 1.8 \mbox{ ns;} \\ CP \mbox{ Input} \mbox{ PRR} = 10 \mbox{ MHz; } \mbox{ Duty Cycle} = 50\% \\ D \mbox{ Input} \mbox{ PRR} = 5 \mbox{ MHz; } \mbox{ Duty Cycle} = 50\%. \end{array}$

Figure 6. I_{CCD} Test Circuit

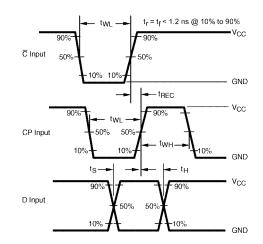
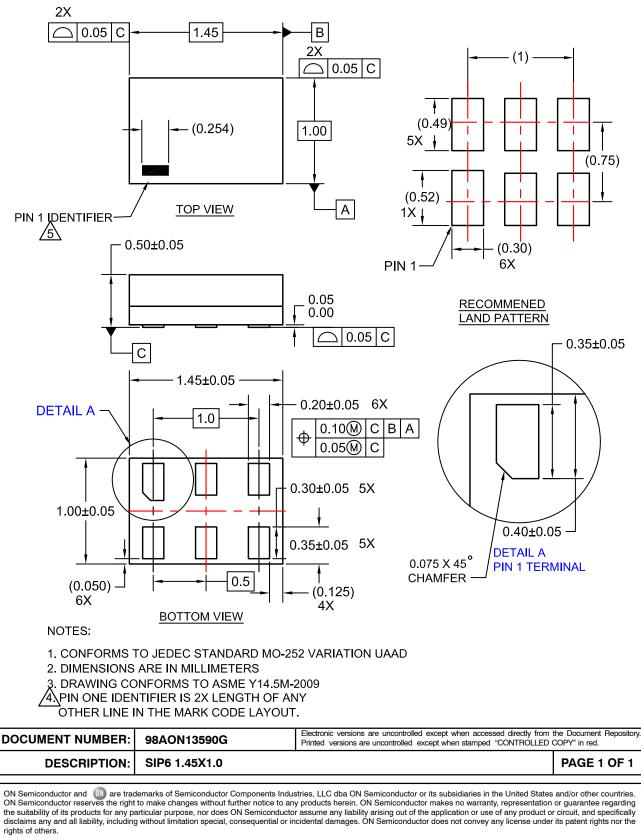


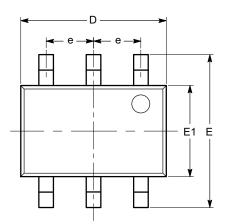
Figure 8. AC Waveforms

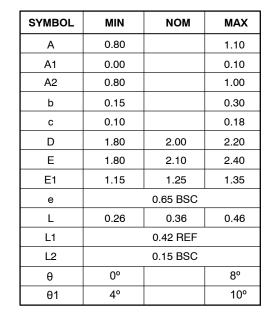
Device	Top Mark	Packages	Shipping [†]
NC7SZ175P6X	Z75	6-Lead SC70, EIAJ SC88, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ175L6X	C4	6-Lead MicroPak, 1.00 mm Wide	5000 / Tape & Reel

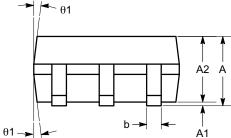

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

SIP6 1.45X1.0 CASE 127EB ISSUE O


DATE 31 AUG 2016




SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD-01 ISSUE A

DATE 07 JUL 2010

Î	Î		
2	А	\Box	
V	- 🖌	θ ↓	
A \1			

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

SIDE VIEW

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2 PAGE 1 0					
ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

c L2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative