TinyLogic HS Inverter #### Description The NC7S04 is a single high performance CMOS Inverter. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both input and output with respect to the V_{CC} and GND rails. Three stages of gain between input and output assures high noise immunity and reduced sensitivity to input edge rate. #### **Features** - Space-Saving SC-74A and SC-88A 5-Lead Package - Ultra-Small MicroPakTM Leadless Package - High Speed: $t_{PD} = 3$ ns Typ - Low Quiescent Power: I_{CC} < 1 μA - Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH} - Broad V_{CC} Operating Range: 2 V 6 V - Balanced Propagation Delays - Specified for 3 V Operation - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Symbol ## ON Semiconductor® www.onsemi.com SIP6 CASE 127EB SC-74A CASE 318BQ 1 SC-88A CASE 419A-02 AA, 7S04, S04 = Specific Device Code KK = 2-Digit Lot Run Traceability Code XY = 2-Digit Date Code Format Z = Assembly Plant Code T = Die Run Code = Year Coding Scheme = Plant Code Identifier = Eight-Week Datacoding Scheme #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. # **Pin Configurations** Figure 2. SC-88A and SC-74A (Top View) # NC 1 6 V_{CC} A 2 5 NC GND 3 4 Y Figure 3. MicroPak (Top Through View) # **PIN DESCRIPTIONS** | Name | Description | |------|-------------| | А | Input | | Y | Output | | NC | No Connect | # **FUNCTION TABLE** $(Y = \overline{A})$ | Input | Output | |-------|--------| | Α | Y | | L | Н | | Н | L | H = HIGH Logic Level L = LOW Logic Level #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | | Min | Max | Unit | |-------------------------------------|--|--|------|-----------------------|------| | V _{CC} | Supply Voltage | | -0.5 | 6.5 | V | | I _{IK} | DC Input Diode Current | $V_{IN} \le -0.5 \text{ V}$ | - | -20 | mA | | | | $V_{IN} \ge V_{CC} + 0.5 V$ | - | +20 | | | V _{IN} | DC Input Voltage | • | -0.5 | V _{CC} + 0.5 | V | | I _{OK} | DC Output Diode Current $V_{OUT} \le -0.5 \text{ V}$ | | - | -20 | mA | | | | V _{OUT} ≥ V _{CC} + 0.5 V | - | +20 | | | V _{OUT} | DC Output Voltage | | -0.5 | V _{CC} + 0.5 | V | | I _{OUT} | DC Output Source or Sink Current | | - | ±12.5 | mA | | I _{CC} or I _{GND} | DC V _{CC} or Ground Current per Output Pin | | - | ±25 | mA | | T _{STG} | Storage Temperature | | -65 | +150 | °C | | TJ | Junction Temperature | | - | +150 | °C | | TL | Lead Temperature (Soldering, 10 Seconds) | | - | +260 | °C | | P_{D} | Power Dissipation in Still Air SC-74A | | - | 225 | mW | | | | SC-88A-5 | - | 190 | | | | | MicroPak-6 | - | 327 | 7 | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------------------|---------------------------|--------------------------|-----|-----------------|------| | V _{CC} | Supply Voltage | | 2.0 | 6.0 | V | | V _{IN} | Input Voltage | | 0 | V _{CC} | V | | V _{OUT} | Output Voltage | | 0 | V _{CC} | V | | T _A | Operating Temperature | | -40 | +85 | °C | | t _r , t _f | Input Rise and Fall Times | V _{CC} at 2.0 V | 0 | 20 | ns | | | | V _{CC} at 3.0 V | 0 | 20 | | | | | V _{CC} at 4.5 V | 0 | 10 | | | | | V _{CC} at 6.0 V | 0 | 5 | | | $\theta_{\sf JA}$ | Thermal Resistance | SC-74A | - | 555 | °C/W | | | | SC-88A-5 | - | 659 | | | | | MicroPak-6 | - | 382 | | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ^{1.} Unused inputs must be held HIGH or LOW. They may not float. #### DC ELECTICAL CHARACTERISTICS | | | | | 7 | Γ _A = +25°C | ; | T _A = -40 | to +85°C | | |-----------------|---------------------------|--------------------------|---|------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Тур | Max | Min | Max | Unit | | V _{IH} | HIGH Level Input Voltage | 2.0
3.0 - 6.0 | | 1.50
0.7 V _{CC} | -
- | -
- | 1.50
0.7 V _{CC} | -
- | V | | V _{IL} | LOW Level Input Voltage | 2.0
3.0 - 6.0 | | -
- | -
- | 0.50
0.3 V _{CC} | -
- | 0.50
0.3 V _{CC} | V | | V _{OH} | HIGH Level Output Voltage | 2.0
3.0
4.5
6.0 | $I_{OH} = -20 \mu A$ $V_{IN} = V_{IL}$ | 1.90
2.90
4.40
5.90 | 2.0
3.0
4.5
6.0 | -
-
-
- | 1.90
2.90
4.40
5.90 | -
-
-
- | V | | | | 3.0
4.5
6.0 | $V_{IN} = V_{IL}$
$I_{OH} = -1.3 \text{ mA}$
$I_{OH} = -2.0 \text{ mA}$
$I_{OH} = -2.6 \text{ mA}$ | 2.68
4.18
5.68 | 2.85
4.35
5.85 | -
-
- | 2.63
4.13
5.63 | -
-
- | V | | V _{OL} | LOW Level Output Voltage | 2.0
3.0
4.5
6.0 | $I_{OL} = 20 \mu A$
$V_{IN} = V_{IH}$ | -
-
- | 0.0
0.0
0.0
0.0 | 0.10
0.10
0.10
0.10 | -
-
-
- | 0.10
0.10
0.10
0.10 | V | | | | 3.0
4.5
6.0 | $V_{IN} = V_{IH}$ $I_{OL} = 1.3 \text{ mA}$ $I_{OL} = 2.0 \text{ mA}$ $I_{OL} = 2.6 \text{ mA}$ | -
-
- | 0.1
0.1
0.1 | 0.26
0.26
0.26 | -
-
- | 0.33
0.33
0.33 | V | | I _{IN} | Input Leakage Current | 6.0 | V _{IN} = V _{CC} , GND | - | = | ±0.1 | - | ±1.0 | μΑ | | I _{CC} | Quiescent Supply Current | 6.0 | V _{IN} = V _{CC} , GND | _ | - | 1.0 | - | 10.0 | μΑ | # **AC ELECTRICAL CHARACTERISTICS** | | | | | 7 | Γ _A = +25°C | | T _A = -40 | to +85°C | | |-------------------------------------|--|--------------------------|------------------------|------------------|-----------------------------|-------------------------------|----------------------|-------------------------------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , t _{PHL} | Propagation Delay (Figure 4, 6) | 5.0 | C _L = 15 pF | _ | 3.0 | 15.0 | - | _ | ns | | | | 2.0
3.0
4.5
6.0 | C _L = 50 pF | -
-
-
- | 18.0
10.0
7.0
6.0 | 100.0
27.0
20.0
17.0 | -
-
-
- | 125.0
35.0
25.0
21.0 | ns | | t _{TLH} , t _{THL} | Output Transition Time | 5.0 | C _L = 15 pF | - | 3.0 | 10.0 | - | - | ns | | | (Figure 4, 6) | 2.0
3.0
4.5
6.0 | C _L = 50 pF | -
-
- | 25.0
16.0
11.0
9.0 | 125.0
35.0
25.0
21.0 | -
-
- | 155.0
45.0
31.0
26.0 | ns | | C _{IN} | Input Capacitance (Figure 4, 6) | Open | | _ | 2.0 | 10.0 | - | 10.0 | pF | | C _{PD} | Power Dissipation Capacitance (Figure 5) | 5.0 | (Note 2) | - | 6.0 | - | _ | - | pF | ^{2.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static). ## **AC Loading and Waveforms** $\rm C_L$ includes load and stray capacitance Input PRR = 1.0 MHz, $\rm t_W$ = 500 ns Figure 4. AC Test Circuit Figure 6. AC Waveforms Input = AC Waveforms; PRR = Variable; Duty Cycle = 50%. Figure 5. I_{CCD} Test Circuit #### **DEVICE ORDERING INFORMATION** | Device | Top Mark | Packages | Shipping [†] | |-----------|----------|----------|-----------------------| | NC7S04M5X | 7S04 | SC-74A | 3000 / Tape & Reel | | NC7S04P5X | S04 | SC-88A | 3000 / Tape & Reel | | NC7S04L6X | AA | MicroPak | 5000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **PACKAGE DIMENSIONS** SIP6 1.45X1.0 CASE 127EB ISSUE O - NOTES: - 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD - 2. DIMENSIONS ARE IN MILLIMETERS - 3. DRAWING CONFORMS TO ASME Y14.5M-2009 - 4.PIN ONE IDENTIFIER IS 2X LENGTH OF ANY - OTHER LINE IN THE MARK CODE LAYOUT. #### **PACKAGE DIMENSIONS** #### SC-74A CASE 318BQ **ISSUE B** #### C SEATING PLANE SIDE VIEW **RECOMMENDED** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEPT 0.15 PER SIDE EXCEED 0.15 PER SIDE. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 0.90 | 1.10 | | | | | A1 | 0.01 | 0.10 | | | | | b | 0.25 | 0.50 | | | | | C | 0.10 | 0.26 | | | | | D | 2.85 | 3.15 | | | | | E | 2.50 | 3.00 | | | | | E1 | 1.35 | 1.65 | | | | | е | 0.95 BSC | | | | | | L | 0.20 | 0.60 | | | | | | • 0 | 400 | | | | #### **PACKAGE DIMENSIONS** # SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BLIBBS. BURRS. | | INC | HES | MILLIN | IETERS | |-----|-----------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | C | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 BSC | | 0.65 BSC | | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 REF | | 0.20 | REF | | S | 0.079 | 0.087 | 2.00 | 2.20 | #### **SOLDER FOOTPRINT** | STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 2:
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR
5. CATHODE | STYLE 3:
PIN 1. ANODE 1
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE 1 | |---|--|--| | STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 | STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR | STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER | STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2 STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4 MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative ♦ NC7S04/D