

ON Semiconductor®

FDS4675-F085 40V P-Channel PowerTrench[®] MOSFET

General Description

This P-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced Power Tranch process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5 V - 20 V).

Applications

- **Powermanagement**
- . Load switch
- **Battery protection**

Features

-11 A, -40 V $\ R_{DS(ON)}$ = 0.013 Ω @ V_{GS} = -10 V $R_{DS(ON)} = 0.017 \Omega @ V_{GS} = -4.5 V$

- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}

4

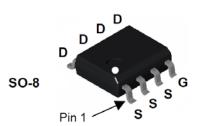
3

2

1

- High power and current handling capability
- Qualified to AEC Q101

5


6

7

8

12mm

RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

FDS4675-F085

Symbol		Parame	ter	Ratings		Units	
V _{DSS}	Drain-Sourc	e Voltage		-40	-40		
V _{GSS}	Gate-Source	e Voltage		-	±20		
I _D	Drain Current		Continuous	-11 ^(Note 1a)		Α	
			Pulsed	-50		А	
P _D	Power Dissipation for Single Operation			2.4 (steady st	2.4 (steady state) (Note 1a)		
				1.4 ^{(Not}	1.4 ^(Note 1b)		
				1.2 ^{(Not}	1.2 ^(Note 1c)		
T_J, T_{STG}	Operating and Storage Junction Temperature Range			-55 to +	-55 to +150		
Thermal	Characte	ristics					
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient			62.5 (steady state), \$	62.5 (steady state), 50 (10 sec) ^(Note 1a)		
$R_{ heta JA}$	Thermal Re	sistance, Junction to Am	125 ^{(Not}	125 ^(Note 1c)			
$R_{ ext{ heta}JC}$	Thermal Re	sistance, Junction to Ca	25 ^{(Not}	25 ^(Note 1)			
ackage	Marking	and Ordering In	nformation	L			
Device Marking		Device	Reel Size	Tape width Quant		/	

13"

FDS4675

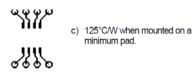
2500 units

FDS4675-F085
— 40V
P-ChannelTrench [®]
MOSFET

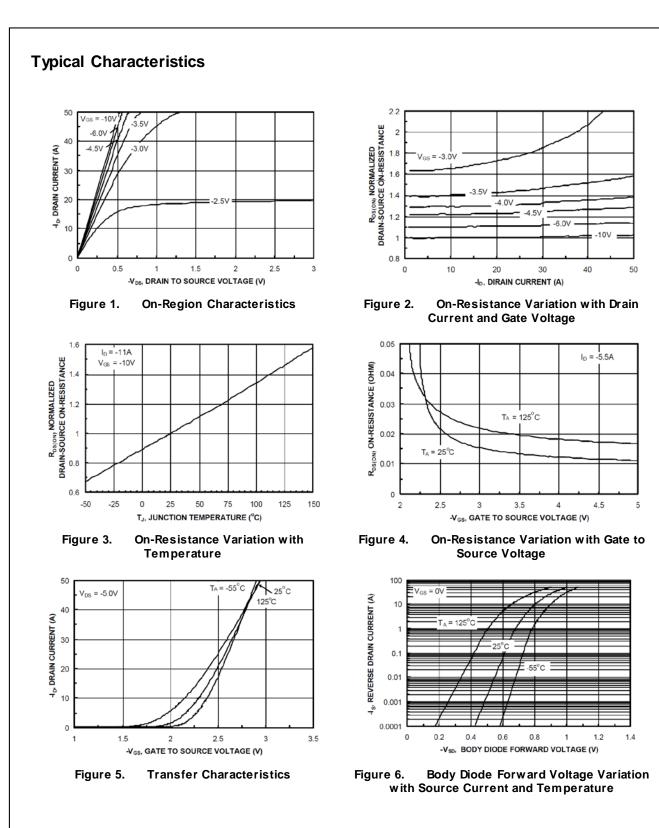
-

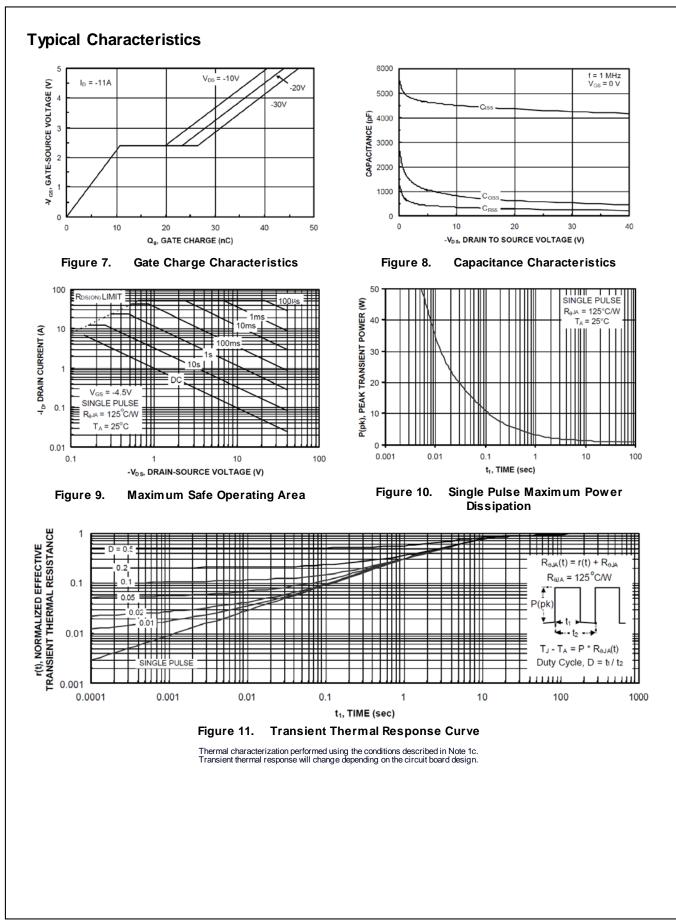
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ff Characterist	lics					
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-40			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, Referenced to 25°C		-34		mV/
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -32 V_{,} V_{GS} = 0 V$			-1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$			-100	n/
n Characterist	tics (Note 2)					<u> </u>
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1	-1.4	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to $25^{\circ}C$		4.6		mV,
		V_{GS} = -10 V, I_{D} = -11 A		10	13	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} = -4.5 V, I _D = -9.5 A		13	17	m
		V_{GS} = -10 V, I_D = -11 A, T_J = 125 °C		15	21	1
g _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -11 A$		44		S
ynamic Charac	cteristics					
CISS	Input Capacitance			4350		pl
C _{oss}	Output Capacitance	$V_{\text{DS}} = -20 \text{ V}, V_{\text{GS}} = 0 \text{ V}, f = 1 \text{ MHz}$		622		р
C_{RSS}	Reverse Transfer Capacitance			290		р
witching Chara	acteristics ^(Note 2)	•				
t _{d(on)}	Tum-On Delay Time			40	64	n
tr	Turn-On Rise Time	$V_{DD} = -20 V, I_D = -1 A$		49	79	n
$t_{d(off)}$	Tum-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		100	160	n
t _f	Turn-Off Fall Time			60	96	n
Qg	Total Gate Charge			40	56	n
Q_{gs}	Gate-Source Charge	V_{DS} = -20 V, I_{D} = -11 A, V_{GS} = -4.5 V		11		n
Q_{gd}	Gate-Drain Charge			13		n
rain-Source Di	ode Characteristics and Maximum Ra	tings				
ls	Maximum Continuous Drain-Source Diode Forward Current				-2.1	A
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ A}, \text{ I}_{S} = -2.1 \text{ A}^{(Note \ 2)}$		-0.7	-1.2	١

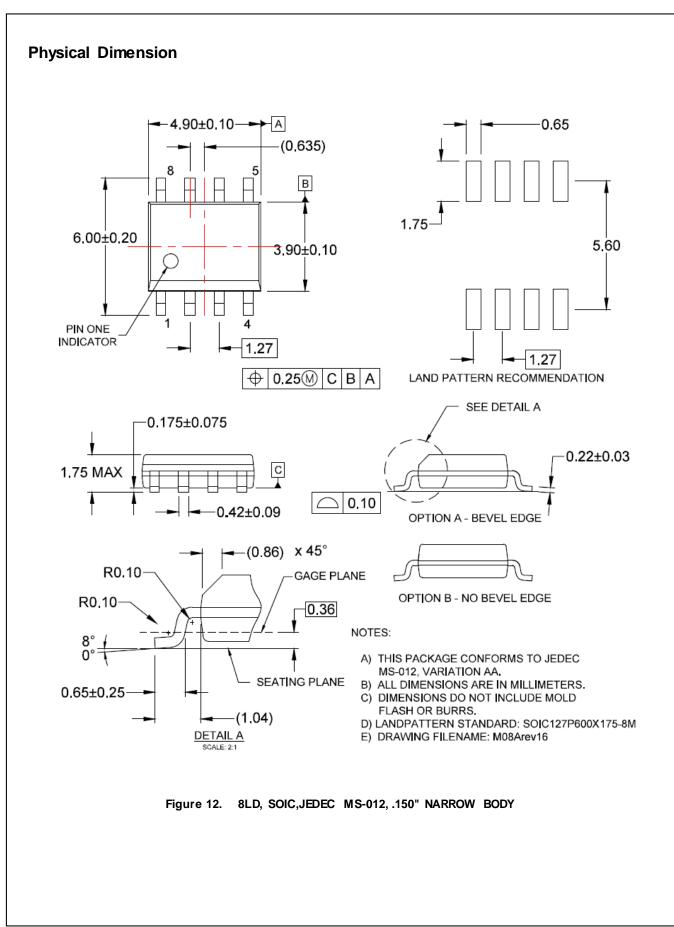
.....


R_{0.1A} is the sum of the junction to case and case to ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0.1C} is guaranteed by design while R_{0.CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in2 pad of 2 oz copper




b) 105°C/W when mounted on a .04 in² pad of 2 oz copper



Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications using ON Semiconductor provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor data sheets and/or specification reducts are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction any euclide divides intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all daims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized upplications such associated with such unintended or unauthorized upplications, and resigned intendet, reasonabl

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative