

TWO OUTPUT DIFFERENTIAL BUFFER FOR PCIE GEN3

9DB233

Description

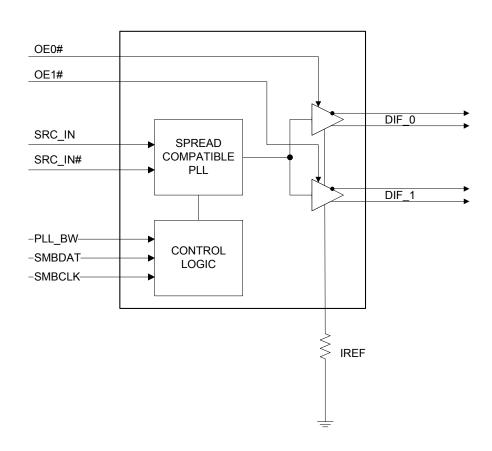
The 9DB233 zero-delay buffer supports PCle Gen3 requirements, while being backwards compatible to PCle Gen2 and Gen1. The 9DB233 is driven by a differential SRC output pair from an IDT 932S421 or 932SQ420 or equivalent main clock generator. It attenuates jitter on the input clock and has a selectable PLL bandwidth to maximize performance in systems with or without Spread-Spectrum clocking. An SMBus interface allows control of the PLL bandwidth and bypass options, while 2 clock request (OE#) pins make the 9DB233 suitable for Express Card applications.

Recommended Application

2 output PCIe Gen3 zero-delay/fanout buffer

Output Features

2 - 0.7V current mode differential HCSL output pairs


Features/Benefits

- OE# pins; suitable for Express Card applications
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL bandwidth; minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible; tracks spreading input clock for low EMI
- SMBus Interface; allows control of PLL BW and Mode

Key Specifications

- Cycle-to-cycle jitter < 50 ps
- Output-to-output skew < 50 ps
- PCle Gen3 phase jitter < 1.0ps RMS

Block Diagram

Pin Configuration

PLL_BW	1		20	VDDA
SRC_IN	2		19	GNDA
SRC_IN#	3		18	IREF
vOE0#	4	33	17	vOE1#
VDD	5	Ŋ	16	VDD
GND	6	B	15	GND
DIF_0	7	0 6	14	DIF_1
DIF_0#	8	-	13	DIF_1#
VDD	9		12	VDD
SMBDAT	10		11	SMBCLK

Note: Pins preceeded by 'v' have internal 120K ohm pull down resistors

Power Distribution Table

Pin I	Number	Description				
VDD	GND	Description				
5,9,12,16	6,15	Differential Outputs				
9	6	SMBUS				
20	19	IREF				
20	19	Analog VDD & GND for PLL core				

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	PLL_BW	IN	3.3V input for selecting PLL Band Width
'	FLL_DVV	IIN	0 = low, 1= high
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	vOE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
5	VDD	PWR	Power supply, nominal 3.3V
6	GND	PWR	Ground pin.
7	DIF_0	OUT	0.7V differential true clock output
8	DIF_0#	OUT	0.7V differential Complementary clock output
9	VDD	PWR	Power supply, nominal 3.3V
10	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
11	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
12	VDD	PWR	Power supply, nominal 3.3V
13	DIF_1#	OUT	0.7V differential Complementary clock output
14	DIF_1	OUT	0.7V differential true clock output
15	GND	PWR	Ground pin.
16	VDD	PWR	Power supply, nominal 3.3V
17	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
18	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750hm is the standard value for 1000hm differential impedance. Other impedances require different values. See data sheet.
19	GNDA	PWR	Ground pin for the PLL core.
20	VDDA	PWR	3.3V power for the PLL core.

Note:

Pins preceded by 'v' have internal 120K ohm pull down resistors

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DB233. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			٧	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300	400	1000	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	-0.02	5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	50	55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, C _L = Full load;		70	80	mA	1
Powerdown Current	I _{DD3.3PD}	All diff pairs driven			N/A	mA	1
	I _{DD3.3PDZ}	All differential pairs tri-stated			N/A	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics-Input/Supply/Common Parameters

mage 122	0.0 1 ., 0,0					
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
T _{COM}	Commmercial range	0		70	°C	1
T_IND	Industrial range	-40		85	°C	1
V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	1
V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	1
I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
I _{INP}	$\label{eq:single-ended} Single-ended inputs \\ V_{IN} = 0 \text{ V}; \text{ Inputs with internal pull-up resistors} \\ V_{IN} = \text{VDD}; \text{ Inputs with internal pull-down resistors}$	-200		200	uA	1
F_{ibyp}	V _{DD} = 3.3 V, Bypass mode	10		110	MHz	2
F_{ipll}	$V_{DD} = 3.3 \text{ V}, 100\text{MHz PLL mode}$	33	100.00	110	MHz	2
L_{pin}				7	nΗ	1
C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
C_{OUT}	Output pin capacitance			6	pF	1
T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.800	1.8	ms	1,2
f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
t_{F}	Fall time of control inputs			5	ns	1,2
t _R	Rise time of control inputs			5	ns	1,2
V_{ILSMB}				0.8	V	1
V_{IHSMB}		2.1		V_{DDSMB}	V	1
V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
I _{PULLUP}	@ V _{OL}	4			mA	1
V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5
	SYMBOL TCOM TIND VIH VIL IIN IINP Fibyp FipII Lpin CIN COUT TSTAB fMODIN tLATOE# tpRVPD tf tR VILSMB VOLSMB IPULLUP VDDSMB trsMB trsMB	TCOM TIND TIND TIND TIND TIND TIND TIND TIND	SYMBOL CONDITIONS MIN TCOM Commmercial range 0 TIND Industrial range -40 VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD -5 Single-ended inputs -200 VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fibyp VDD = 3.3 V, Bypass mode 10 Figul VDD = 3.3 V, 100MHz PLL mode 33 Lpin Logic Inputs, except DIF_IN 1.5 CIN Logic Inputs, except DIF_IN 1.5 COUT Output pin capacitance 1.5 TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 30 Image: Im	SYMBOL CONDITIONS	SYMBOL CONDITIONS	SYMBOL CONDITIONS

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2\}mbox{Control}$ input must be monotonic from 20% to 80% of input swing.

 $^{^3}$ Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics-DIF 0.7V Current Mode Differential Outputs

 $T_A = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	0.6	2	4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on		4.2	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	791	850	mV	1
Voltage Low	VLow	averaging on)	-150	13	150] '''V	1
Max Voltage	Vmax	Measurement on single ended signal using		801	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	5		IIIV	1
Vswing	Vswing	Scope averaging off	300	1557		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	367	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		46	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O =50Ω (100Ω differential impedance).

Electrical Characteristics—Output Duty Cycle, Jitter, Skew and PLL Characterisitics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode	2	2.2	4	MHz	1
PLL Bandwidth	DVV	-3dB point in Low BW Mode	0.4	0.5	1	MHz	1
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		0.6	1.5	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	48	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	0.4	2	%	1,4
Clean Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2500	3660	4500	ps	1
Skew, Input to Output	t _{pdPLL}	Hi BW PLL Mode V _T = 50%	-50	136	350	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		16	50	ps	1
Jitter, Cycle to cycle	+	PLL mode		29	50	ps	1,3
Jitter, Cycle to cycle	I _{jcyc-cyc}	Additive Jitter in Bypass Mode		0.2	50	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

 $^{^{2}\,}I_{REF} = V_{DD}/(3xR_{R}). \ \ \, \text{For} \,\,R_{R} = 475\Omega \,\,(1\%), \,\,I_{REF} = 2.32\text{mA}. \,\,I_{OH} = 6\,\,x\,\,I_{REF} \,\,\text{and}\,\,V_{OH} = 0.7V\,\,@\,\,Z_{O} = 50\Omega.$

³ Measured from differential waveform

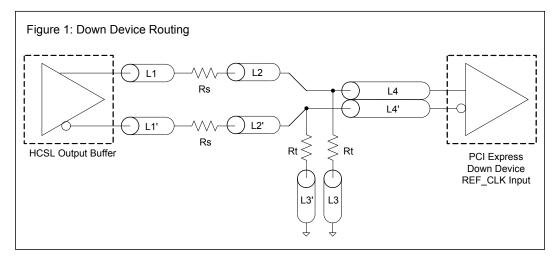
⁴ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

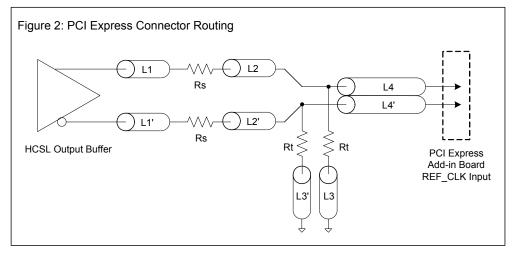
Electrical Characteristics-PCle Phase Jitter Parameters

OOM IND, 11 7							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{iphPCleG1}	PCIe Gen 1		34	86	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1	3	ps (rms)	1,2
Phase Jitter, PLL Mode	T _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2	3.1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		1	1	ps (rms)	1,2,4
	t _{iphPCleG1}	PCIe Gen 1		2	5	ps (p-p)	1,2,3
Additive Phase Jitter,	+	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.2	0.3	ps (rms)	1,2
Bypass Mode	T _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.1	0.2	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.1	0.2	ps (rms)	1,2,4

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

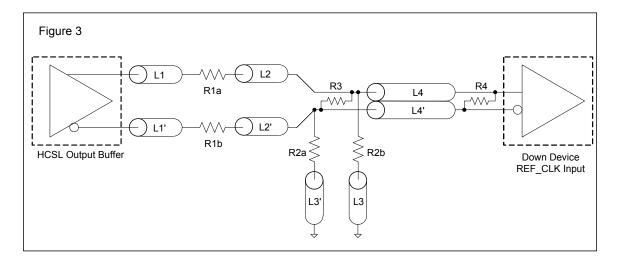

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.


⁴ Subject to final ratification by PCI SIG.

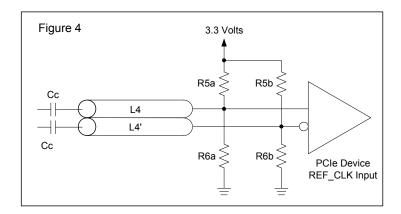
SRC Reference Clock	(
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1
Rs	33	ohm	1
Rt	49.9	ohm	1

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



9DB233


8

	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff Vp-p Vcm R1 R2 R3 R4 Note										
0.45v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			

R1a = R1b = R1 R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Сс	0.1 µF						
Vcm	0.350 volts						

General SMBus Serial Interface Information for 9DB233

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Block Write Operation									
Controll	er (Host)		IDT (Slave/Receiver)							
Т	starT bit									
Slave A	Address									
WR	WRite									
			ACK							
Beginning	g Byte = N									
			ACK							
Data Byte	Count = X									
			ACK							
Beginnin	ig Byte N									
			ACK							
0		×								
0		X Byte	0							
0		æ	0							
			0							
Byte N	Byte N + X - 1									
			ACK							
Р	stoP bit									

Read Address	Write Address
D4 _(H)	D5 _(H)

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	peration	
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WR WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	RD ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		ę	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Device Control Register, READ/WRITE ADDRESS (D4/D5)

Byte	0 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	SW_EN	Enables SMBus Control of bite 1 and 0	RW	PLL Functions controlled by SMBus registers	PLL Functions controlled by device pins	1
Bit 6	1	RESE	ERVED	RW			Χ
Bit 5	•	RESE	ERVED	RW	-		Χ
Bit 4	•	RESE	ERVED	RW	1		Χ
Bit 3	-	RESE	ERVED	RW		-	X
Bit 2	-	RESE	ERVED	RW			Χ
Bit 1	-	PLL BW #adjust	Selects PLL Bandwidth	RW	Low BW	High BW	1
Bit 0	-	PLL Enable	Bypasses PLL for board test	RW	PLL bypassed (fan out mode)	PLL enabled (ZDB mode)	1

SMBus Table: Output Enable Register

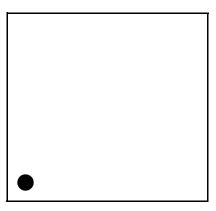
Byte 1 Pin #		Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		RESE	ERVED	RW		-	X
Bit 6	-		RESE	ERVED	RW		-	Х
Bit 5	-		RESE	ERVED	RW	-		Х
Bit 4	-		RESE	ERVED	RW		-	Х
Bit 3	-		RESE	ERVED	RW		-	Х
Bit 2	-		RESE	ERVED	RW		-	Х
Bit 1	-		RESERVED		RW		-	Х
Bit 0	-		RESE	RVED	RW		-	Х

SMBus Table: Function Select Register

Byte 2 Pin #		Name	Control Function	Type	0	1	Default	
Bit 7			RESE	ERVED	RW		-	Х
Bit 6	RESE		ERVED	RW		-	X	
Bit 5	- RESER		ERVED	RW		-	Х	
Bit 4			RESERVED		RW		-	Х
Bit 3	-		RESE	ERVED	RW		-	X
Bit 2	-		RESE	ERVED	RW		-	X
Bit 1	-		RESERVED		RW			X
Bit 0	- RESER		ERVED	RW			X	

SMBus Table: Vendor & Revision ID Register

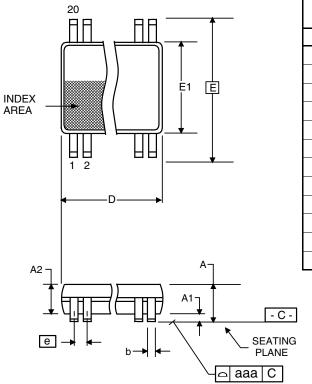
Byte 3 Pin #		Name	Control Function	Type	0	1	Default	
Bit 7		-	RID3	REVISION ID	R	ı	ı	0
Bit 6	-	-	RID2		R	ı	ı	0
Bit 5		-	RID1	HE VISION ID	R	-	-	0
Bit 4	-		RID0		R	-	-	1
Bit 3		-	VID3		R	ı	ı	0
Bit 2	-		VID2	VENDOR ID	R	-	-	0
Bit 1			VID1	VENDOR ID	R	-	-	0
Bit 0			VID0		R	-	-	1

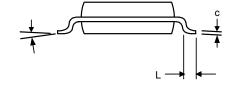

SMBus Table: DEVICE ID

Byte	4	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-				R		-	0
Bit 6	-				R		-	0
Bit 5	-				R		-	0
Bit 4	-		Dev	rice ID	R		-	
Bit 3	-		= 0	6 Hex	R		-	0
Bit 2	-						-	1
Bit 1	-			R	-		1	
Bit 0	-				R		-	0

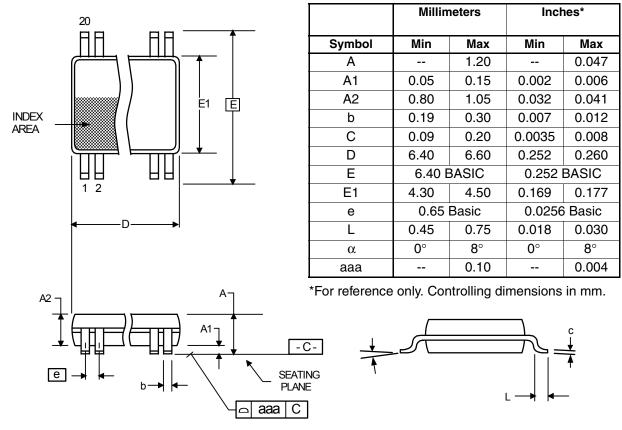
SMBus Table: Byte Count Register

Byte	5	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		BC7		RW	ı	-	0
Bit 6	-		BC6	Writing to this	RW	-	-	0
Bit 5	-		BC5	register will	RW	-	-	0
Bit 4	-		BC4	configure how	RW	-	-	0
Bit 3	-		BC3	many bytes will be	RW	-	-	0
Bit 2	-		BC2	read back, default	RW	-	-	1
Bit 1	-		BC1	is $06 = 6$ bytes.	RW	-	-	1
Bit 0	-		BC0		RW		-	0


Marking Diagram


Notes:

- 1. ##### is the lot number.
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "LF" denotes RoHS compliant package.
- 4. Bottom marking: country of origin if not USA.


Package Outline and Package Dimensions (20-pin SSOP, 150 Mil. Wide Body)

	Millimeters		Inches	
Symbol	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2		1.50		0.059
b	0.20	0.30	0.008	0.012
С	0.18	0.25	0.007	0.010
D	8.55	8.75	0.337	0.344
Е	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
е	.635 Basic		.025 Basic	
L	0.40	1.27	0.016	0.050
α	0°	8°	0°	8°
aaa		0.10		0.004

Package Outline and Package Dimensions (20-pin TSSOP, 4.4mm Narrow Body)

Ordering Information

Part / Order Number Shipping Packaging		Package	Temperature	
9DB233AFLF	Tubes	20-pin SSOP	0 to +70°C	
9DB233AFLFT	Tape and Reel	20-pin SSOP	0 to +70°C	
9DB233AFILF	Tubes	20-pin SSOP	-40 to +85°C	
9DB233AFILFT	Tape and Reel	20-pin SSOP	-40 to +85°C	
9DB233AGLF	Tubes	20-pin TSSOP	0 to +70°C	
9DB233AGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C	
9DB233AGILF	Tubes	20-pin TSSOP	-40 to +85°C	
9DB233AGILFT	Tape and Reel	20-pin TSSOP	-40 to +85°C	

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Who	Issue Date	Description	Page #
Α	RDW	6/30/2010	Released to final	
В	RDW	7/12/2010	Changed PWD to Default in SMBus tables.	10,11
С	RDW	4/14/2011	Changed pull down indicator from '**' to ' v '.	
D	RDW	4/9/2012	Updated typical electrical characteristics to reflect improved performance	3-6

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

