FEATURES

Four Programmable Output Voltages:
$10.000 \mathrm{~V}, 7.500 \mathrm{~V}, 5.000 \mathrm{~V}, 2.500 \mathrm{~V}$
Laser-Trimmed to High Accuracies
No External Components Required
Trimmed Temperature Coefficient:
$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (AD584L)
$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (AD584T)
Zero Output Strobe Terminal Provided
Two Terminal Negative Reference Capability (5 V and above)
Output Sources or Sinks Current
Low Quiescent Current: 1.0 mA Max
10 mA Current Output Capability
MIL-STD-883 Compliant Versions Available

GENERAL DESCRIPTION

The AD584 is an eight-terminal precision voltage reference offering pin-programmable selection of four popular output voltages: $10.000 \mathrm{~V}, 7.500 \mathrm{~V}, 5.000 \mathrm{~V}$ and 2.500 V . Other output voltages, above, below or between the four standard outputs, are available by the addition of external resistors. Input voltage may vary between 4.5 V and 30 V .

Laser Wafer Trimming (LWT) is used to adjust the pinprogrammable output levels and temperature coefficients, resulting in the most flexible high precision voltage reference available in monolithic form.
In addition to the programmable output voltages, the AD584 offers a unique strobe terminal which permits the device to be turned on or off. When the AD584 is used as a power supply reference, the supply can be switched off with a single, low-power signal. In the "off" state the current drain by the AD584 is reduced to about $100 \mu \mathrm{~A}$. In the "on" state the total supply current is typically $750 \mu \mathrm{~A}$ including the output buffer amplifier.
The AD584 is recommended for use as a reference for 8-, 10-, or 12 -bit D / A converters which require an external precision reference. The device is also ideal for all types of A/D converters of up to 14-bit accuracy, either successive approximation or integrating designs, and in general can offer better performance than that provided by standard self-contained references.
The AD584J, K , and L are specified for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; the AD584S and T are specified for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. All grades are packaged in a hermetically sealed eightterminal TO-99 metal can; the AD584 J and K are also available in an 8-lead plastic DIP.

[^0]REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PIN CONFIGURATIONS

8-Lead DIP

PRODUCT HIGHLIGHTS

1. The flexibility of the AD584 eliminates the need to design-in and inventory several different voltage references. Further more one AD584 can serve as several references simultaneously when buffered properly.
2. Laser trimming of both initial accuracy and temperature coefficient results in very low errors over temperature without the use of external components. The AD584LH has a maximum deviation from 10.000 V of $\pm 7.25 \mathrm{mV}$ from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
3. The AD584 can be operated in a two-terminal "Zener" mode at 5 V output and above. By connecting the input and the output, the AD584 can be used in this "Zener" configuration as a negative reference.
4. The output of the AD584 is configured to sink or source currents. This means that small reverse currents can be tolerated in circuits using the AD 584 without damage to the reference and without disturbing the output voltage ($10 \mathrm{~V}, 7.5 \mathrm{~V}$, and 5 V outputs).
5. The AD584 is available in versions compliant with MIL-STD883. Refer to the Analog Devices Military Products Databook or current AD584/883B data sheet for detailed specifications.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2001

Model	AD584J			AD584K			AD584L			Unit
	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
			$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 15 \\ & \pm 7.5 \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \pm 8 \\ & \pm 6 \\ & \pm 3.5 \end{aligned}$			$\begin{aligned} & \pm 5 \\ & \pm 4 \\ & \pm 3 \\ & \pm 2.5 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
OUTPUT VOLTAGE CHANGE Maximum Deviation from $25^{\circ} \mathrm{C}$ Value, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}{ }^{2}$ $10.000 \mathrm{~V}, 7.500 \mathrm{~V}, 5.000 \mathrm{~V}$ Outputs 2.500 V Output Differential Temperature Coefficients Between Outputs		5	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		3	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
QUIESCENT CURRENT Temperature Variation		$\begin{aligned} & 0.75 \\ & 1.5 \end{aligned}$	1.0		$\begin{aligned} & 0.75 \\ & 1.5 \end{aligned}$	1.0		$\begin{aligned} & 0.75 \\ & 1.5 \end{aligned}$	1.0	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} /{ }^{\circ} \mathrm{C} \end{aligned}$
TURN-ON SETTLING TIME TO 0.1\%		200			200			200		$\mu \mathrm{s}$
NOISE (0.1 Hz to 10 Hz)		50			50			50		$\mu \mathrm{V}$ p-p
LONG-TERM STABILITY		25			25			25		ppm/1000 Hrs
SHORT-CIRCUIT CURRENT		30			30			30		mA
LINE REGULATION (No Load) $\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 30 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {OUT }} 2.5 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$			$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$			$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
LOAD REGULATION $0 \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA}$, All Outputs		20	50		20	50		20	50	ppm/mA
OUTPUT CURRENT $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {OUT }} 2.5 \mathrm{~V}$ Source @ $25^{\circ} \mathrm{C}$ Source $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Sink $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			mA mA mA
TEMPERATURE RANGE Operating Storage	$\begin{aligned} & 0 \\ & -65 \end{aligned}$		$\begin{aligned} & 70 \\ & +175 \end{aligned}$	$\begin{aligned} & 0 \\ & -65 \end{aligned}$		$\begin{aligned} & 70 \\ & +175 \end{aligned}$	$\begin{aligned} & 0 \\ & -65 \end{aligned}$		$\begin{aligned} & 70 \\ & +175 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \hline \text { PACKAGE OPTION }{ }^{3} \\ & \text { TO-99 (H-08A) } \\ & \text { Plastic (N-8) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AD584JH } \\ & \text { AD584JN } \end{aligned}$			AD584KH AD584KN			AD584LH			

NOTES

${ }^{1}$ At Pin 1.
${ }^{2}$ Calculated as average over the operating temperature range.
${ }^{3} \mathrm{H}=$ Hermetic Metal Can; $\mathrm{N}=$ Plastic DIP.
Specifications subject to change without notice.
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

AD584

Model	AD584S			AD584T			Unit
	Min	Typ	Max	Min	Typ	Max	
			$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 15 \\ & \pm 7.5 \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \pm 8 \\ & \pm 6 \\ & \pm 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
OUTPUT VOLTAGE CHANGE Maximum Deviation from $25^{\circ} \mathrm{C}$ Value, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}{ }^{2}$ $10.000 \mathrm{~V}, 7.500 \mathrm{~V}, 5.000 \mathrm{~V}$ Outputs 2.500 V Output Differential Temperature Coefficients Between Outputs		5	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		3	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
QUIESCENT CURRENT Temperature Variation		$\begin{gathered} 0.75 \\ 1.5 \end{gathered}$	1.0		$\begin{gathered} 0.75 \\ 1.5 \end{gathered}$	1.0	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} /{ }^{\circ} \mathrm{C} \end{aligned}$
TURN-ON SETTLING TIME TO 0.1\%		200			200		$\mu \mathrm{s}$
NOISE (0.1 Hz to 10 Hz)		50			50		$\mu \mathrm{V}$ p-p
LONG-TERM STABILITY		25			25		ppm/1000 Hrs
SHORT-CIRCUIT CURRENT		30			30		mA
LINE REGULATION (No Load) $\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {OUT }} 2.5 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$			$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
LOAD REGULATION $0 \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA}$, All Outputs		20	50		20	50	ppm/mA
OUTPUT CURRENT $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {OUT }} 2.5 \mathrm{~V}$ Source @ $25^{\circ} \mathrm{C}$ Source $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Sink $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			mA mA mA
TEMPERATURE RANGE Operating Storage	$\begin{aligned} & -55 \\ & -65 \end{aligned}$		$\begin{aligned} & +125 \\ & +175 \end{aligned}$	$\begin{aligned} & -55 \\ & -65 \end{aligned}$		$\begin{aligned} & +125 \\ & +175 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
PACKAGE OPTION TO-99 (H-08A)	AD584SH			AD584TH			

NOTES

${ }^{1}$ At Pin 1.
${ }^{2}$ Calculated as average over the operating temperature range.
Specifications subject to change without notice.
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS

Input Voltage $\mathrm{V}_{\text {IN }}$ to Ground . 40 V
Power Dissipation @ $25^{\circ} \mathrm{C}$. 600 mW Operating Junction Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $300^{\circ} \mathrm{C}$ Thermal Resistance

Junction-to-Ambient (H-08A) $150^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING GUIDE

Model	Ouput Voltage $\mathbf{V}_{\mathbf{O}}$	Initial Accuracy		Temperature Coefficient ppm $/{ }^{\circ} \mathrm{C}$	Package Description	Package Option	No. of Parts per Package	Temperature Range ${ }^{\circ} \mathrm{C}$
AD584L	2.5	± 2.5	0.10	10	TO-99	H-8	100	0 to 70
AD584K	2.5	± 3.5	0.14	15	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584T	2.5	± 3.5	0.14	20	TO-99	H-8	100	-55 to +125
AD584S	2.5	± 7.5	0.30	30	TO-99	H-8	100	-55 to +125
AD584J	2.5	± 7.5	0.30	30	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584L	5	± 3	0.06	5	TO-99	H-8	100	0 to 70
AD584K	5	± 6	0.12	15	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584T	5	± 6	0.12	15	TO-99	H-8	100	-55 to +125
AD584S	5	± 15	0.30	30	TO-99	H-8	48	-55 to +125
AD584J	5	± 15	0.30	30	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584L	7.50	± 4	0.05	5	TO-99	H-8	100	0 to 70
AD584K	7.50	± 8	0.11	15	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584T	7.50	± 8	0.11	15	TO-99	H-8	100	-55 to +125
AD584S	7.50	± 20	0.27	30	TO-99	H-8	100	-55 to +125
AD584J	7.50	± 20	0.27	30	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584L	10.00	± 5	0.05	5	TO-99	H-8	100	0 to 70
AD584K	10.00	± 10	0.10	15	TO-99, Plastic	H-8, N-8	100, 48	0 to 70
AD584T	10.00	± 10	0.10	15	TO-99	H-8	100	-55 to +125
AD584S	10.00	± 30	0.30	30	TO-99	H-8	100	-55 to +125
AD584J	10.00	± 30	0.30	30	TO-99, Plastic	H-8, N-8	100, 48	0 to 70

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD584 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

TO-99 Package
 (H-8)

Plastic DIP Package
(N-8)

[^0]: *Protected by U.S. Patent No. 3,887,863; RE 30,586.

