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We prove Conway and Norton’s moonshine conjectures for the infinite dimensional

representation of the monster simple group constructed by Frenkel, Lepowsky and Meur-
man. To do this we use the no-ghost theorem from string theory to construct a family of
generalized Kac-Moody superalgebras of rank 2, which are closely related to the monster
and several of the other sporadic simple groups. The denominator formulas of these su-
peralgebras imply relations between the Thompson functions of elements of the monster
(i.e. the traces of elements of the monster on Frenkel, Lepowsky, and Meurman’s repre-
sentation), which are the replication formulas conjectured by Conway and Norton. These
replication formulas are strong enough to verify that the Thompson functions have most
of the “moonshine” properties conjectured by Conway and Norton, and in particular they
are modular functions of genus 0. We also construct a second family of Kac-Moody super-
algebras related to elements of Conway’s sporadic simple group Co1. These superalgebras
have even rank between 2 and 26; for example two of the Lie algebras we get have ranks
26 and 18, and one of the superalgebras has rank 10. The denominator formulas of these
algebras give some new infinite product identities, in the same way that the denominator
formulas of the affine Kac-Moody algebras give the Macdonald identities.
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1 Introduction.

The main result of the first half of this paper is the following.

Theorem 1.1. Suppose that V = ⊕n∈ZVn is the infinite dimensional graded representa-
tion of the monster simple group constructed by Frenkel, Lepowsky, and Meurman [16,17].
Then for any element g of the monster the Thompson series Tg(q) =

∑
n∈Z Tr(g|Vn)qn is
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a Hauptmodul for a genus 0 subgroup of SL2(R), i.e., V satisfies the main conjecture in
Conway and Norton’s paper [13].

We prove this by constructing a Z2-graded Lie algebra acted on by the monster, called
the monster Lie algebra. This is a generalized Kac-Moody algebra, and by calculating the
“twisted denominator formulas” of this Lie algebra explicitly we get enough information
about the Thompson series Tg(q) to determine them.

In this introduction we explain this result in more detail and briefly describe the
proof, which is contained in sections 6 to 9. The rest of this paper is organized as follows.
Section 2 is an introduction to the second half of the paper (sections 10 to 14) which
uses some of the techniques of the proof to find some new infinite product formulas and
infinite dimensional Lie algebras. Sections 3, 4, and 5 summarize some known results
about vertex algebras, Kac-Moody algebras, and the no-ghost theorem that we use in the
proof of theorem 1.1. Section 15 contains a list of some open questions. There is a list of
notation we use at the end of section 1.

The Fischer-Griess
monster sporadic simple group, of order 246320597611213317.19.23.29.31.41.47.59.71, acts
naturally and explicitly on a graded real vector space V = ⊕n∈ZVn constructed by Frenkel,
Lepowsky and Meurman [16,17] (The vector spaces V and Vn are denoted by V \ and V \

−n

in [16].) The dimension of Vn is equal to the coefficient c(n) of the elliptic modular function
j(τ)− 744 =

∑
n c(n)qn = q−1 + 196884q + 21493760q2 + . . . (where we write q for e2πiτ ,

and Im(τ) > 0). One of the main remaining problems from [16], which theorem 1.1 solves,
is to calculate the character of V as a graded representation of the monster, or in other
words to calculate the trace Tr(g|Vn) of each element g of the monster on each space Vn.
The best way to describe this information is to define the Thompson series

Tg(q) =
∑
n∈Z

Tr(g|Vn)qn

for each element g of the monster, so we want to calculate these Thompson series. For
example, if 1 is the identity element of the monster then Tr(1|Vn) = dim(Vn) = c(n), so
that the Thompson series T1(q) = j(τ) − 744 is the elliptic modular function. McKay,
Thompson, Conway and Norton conjectured [13] that the Thompson series Tg(q) are all
Hauptmoduls for certain explicitly given modular groups of genus 0. (More precisely,
they only conjectured that there should be some graded module for the monster whose
Thompson series are Hauptmoduls, since their conjectures came before the construction
of V .) This conjecture follows from theorem 1.1. The corresponding Hauptmoduls are the
ones listed in [13] (with their constant terms removed), so this completely describes V as
a representation of the monster.

We recall the definition of a Hauptmodul. The group SL2(Z) acts on the upper
half plane H = {τ ∈ C|Im(τ) > 0} by

(
a b
c d

)
(τ) = aτ+b

cτ+d . A meromorphic function on
H invariant under SL2(Z) and satisfying a certain regularity condition at i∞ is called a
modular function of level 1. The phrase “level 1” refers to the group SL2(Z); if this is
replaced by some commensurable group we get modular functions of higher levels. The
elliptic modular function j(τ) is, up to normalizations, the simplest nonconstant modular
function of level 1; more precisely, the modular functions of level 1 are the rational functions
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of j. The element
(
1 1
0 1

)
of SL2(Z) takes τ to τ + 1, so in particular j(τ) is periodic and

can be written as a Laurent series in q = e2πiτ . An exact expression for j is

j(τ) =
(1 + 240

∑
n>0 σ3(n)qn)3

q
∏

n>0(1− qn)24

where σ3(n) =
∑

d|n d
3 is the sum of the cubes of the divisors of n; see any book on

modular forms or elliptic functions, for example [30]. Another way of thinking about j is
that it is an isomorphism from the quotient space H/SL2(Z) to the complex plane, which
can be thought of as the Riemann sphere minus the point at infinity.

We can also consider functions invariant under some group G commensurable with
SL2(Z) acting on H. The quotient H/G is again a compact Riemann surface H/G with
a finite number of points removed. If this compact Riemann surface is a sphere, rather
than something of higher genus, then we say that G is a genus 0 group. In this case a
function giving an isomorphism from the compact Riemann surface H/G to the sphere
C ∪∞ taking i∞ to ∞ is called a Hauptmodul for the genus 0 group G; it is unique up
to addition of a constant and multiplication by a nonzero constant. If a Hauptmodul can
be written as e−2πiaτ+ a function vanishing at i∞ for some positive a then we say that it
is normalized. Every genus 0 group has a unique normalized Hauptmodul. For example,
j(τ) − 744 = e−2πiτ + 0 + 196884e2πiτ + . . . is the normalized Hauptmodul for the genus
0 group SL2(Z).

Another example is G = Γ0(2), where Γ0(N) = {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0 mod N}. The

quotient H/G is then a sphere with 2 points removed, so that G is a genus 0 group. Its
normalized Hauptmodul is T2−(q) = 24+q−1

∏
n>0(1−q2n+1)24 = q−1+276q−2048q2+. . .,

and is equal to the Thompson series of a certain element of the monster of order 2 (of type
2B in atlas [14] notation). Similarly Γ0(N) is a genus 0 subgroup for several other values
of N which correspond to elements of the monster. (However the genus of Γ0(N) tends
to infinity as N increases, so there are only a finite number of integers N for which it has
genus 0; more generally Thompson [31] has shown that there are only a finite number of
conjugacy classes of genus 0 subgroups of SL2(R) which are commensurable with SL2(Z).)

So we want to calculate the Thompson series Tg(τ) and show that they are Haupt-
moduls of genus 0 subgroups of SL2(R). The difficulty with doing this is as follows.
Frenkel, Lepowsky, and Meurman constructed V as the sum of two subspaces V + and V −,
which are the +1 and −1 eigenspaces of a certain element of order 2 in the monster. If
an element g of the monster commutes with this element of order 2, then it is not difficult
to to work out its Thompson series Tg(q) =

∑
n Tr(g|Vn)qn as the sum of two series given

by its traces on V + and V − (this is done in [16,17]), and it would probably be tedious
but straightforward to check directly that these are all Hauptmoduls. Unfortunately, if an
element of the monster is not conjugate to something that commutes with this element of
order 2 then there is no obvious direct way of working out its Thompson series, because it
muddles up V + and V − in a very complicated way.

We calculate these Thompson series indirectly using the monster Lie algebra M . This
is a Z2 = Z⊕ Z graded Lie algebra, whose piece of degree (m,n) ∈ Z2 is isomorphic as a
module over the monster to Vmn if (m,n) 6= (0, 0) and to R2 if (m,n) = (0, 0), so for small
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degrees it looks like

...
...

...
...

...
...

...
· · · 0 0 0 0 V3 V6 V9 · · ·
· · · 0 0 0 0 V2 V4 V6 · · ·
· · · 0 0 V−1 0 V1 V2 V3 · · ·
· · · 0 0 0 R2 0 0 0 · · ·
· · · V3 V2 V1 0 V−1 0 0 · · ·
· · · V6 V4 V2 0 0 0 0 · · ·
· · · V9 V6 V3 0 0 0 0 · · ·

...
...

...
...

...
...

...

.

Very briefly, this Lie algebra is constructed as the space of physical states of a bosonic
string moving in a Z2-orbifold of a 26-dimensional torus (or strictly speaking, about half
the physical states). See section 6 for more details. The space of physical states is a
subquotient of a vertex algebra constructed from the vertex algebra V ; vertex algebras are
described in more detail in [3,16,18], and the properties we use are summarized in section
3. This subquotient can be identified using the no-ghost theorem from string theory ([21]
or section 5), and is as described above.

We need to know what the structure of the monster Lie algebra is. It turns out to be
something called a generalized Kac-Moody algebra, so we explain what these are.

Section 4 describes the results about generalized Kac-Moody algebras that we use.
This paragraph gives a brief summary of them. Kac-Moody algebras can be thought of as
Lie algebras generated by a copy of sl2 for each point in their Dynkin diagram. Generalized
Kac-Moody algebras are rather like Kac-Moody algebras except that we are allowed to glue
together the sl2’s in more complicated ways, and are also allowed to use Heisenberg Lie
algebras as well as sl2’s to generate the algebra. The main difference between Kac-Moody
algebras and generalized Kac-Moody algebras is that the roots α of a Kac-Moody algebra
may be either real ((α, α) > 0) or imaginary ((α, α) ≤ 0) but all the simple roots must be
real, while generalized Kac-Moody algebras may also have imaginary simple roots. Kac-
Moody algebras have a “denominator formula”, which says that a product over positive
roots is equal to a sum over the Weyl group; for example, the denominator formula for the
affine Kac-Moody algebra sl2(R[z, z−1]) is the Jacobi triple product identity. Generalized
Kac-Moody algebras have a denominator formula which is similar to the one for Kac-
Moody algebras, except that it has some extra correction terms for the imaginary simple
roots. (The simple roots of a generalized Kac-Moody algebra correspond to a minimal
set of generators for the subalgebra corresponding to the positive roots. For Kac-Moody
algebras the simple roots also correspond to the points of the Dynkin diagram and to the
generators of the Weyl group.)

We return to the monster Lie algebra. This is a generalized Kac-Moody algebra,
and we will now write down its denominator formula, which says that a product over the
positive roots is a sum over the Weyl group. The positive roots are the vectors (m,n) with
m > 0, n > 0, and the vector (1,−1), and the root (m,n) has multiplicity c(mn). The
Weyl group has order 2 and its nontrivial element maps (m,n) to (n,m), so it exchanges
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p = e(1,0) and q = e(0,1). The denominator formula for the monster Lie algebra is the
product formula for the j function

p−1
∏

m>0,n∈Z

(1− pmqn)c(mn) = j(p)− j(q).

(The left side is antisymmetric in p and q because of the factor of p−1(1 − p1q−1) in the
product.) The reason why we get j(p) and j(q) rather than monomials in p and q on the
right hand side (as we would for ordinary Kac-Moody algebras) is because of the correction
due to the imaginary simple roots of M . The simple roots of M correspond to a set of
generators of the subalgebra E of the elements of M whose degree is to the right of the y
axis (so the roots of E are the positive roots of M), and turn out to be the vectors (1, n)
each with multiplicity c(n). In the picture of the monster Lie algebra given earlier, the
simple roots are given by the column just to the right of the one containing R2. The sum of
the simple root spaces is isomorphic to the space V . The simple root (1,−1) is real of norm
2, and the simple roots (1, n) for n > 0 are imaginary of norm −2n and have multiplicity
c(n) = dim(Vn). As these multiplicities are exactly the coefficients of the j function, it
is not surprising that j appears in the correction caused by the imaginary simple roots.
This discussion is slightly misleading because we have implied that we obtain the product
formula of the j function as the denominator formula of the monster Lie algebra by using
our knowledge of the simple roots; in fact we really have to use this argument in reverse,
using the product formula for the j function in order to work out what the simple roots
of the monster Lie algebra are. We do this in section 7.

We can now extract information about the coefficients of the Thompson series Tg(τ)
from a twisted denominator formula for the monster Lie algebra as follows: for an arbitrary
generalized Kac-Moody algebra there is a more general version of the Weyl denominator
formula which states that

Λ(E) = H(E),

where E is the subalgebra corresponding to the positive roots. Here Λ(E) = Λ0(E) 	
Λ1(E) ⊕ Λ2(E) . . . is a virtual vector space which is the alternating sum of the exterior
powers of E, and similarly H(E) is the alternating sum of the homology groups Hi(E) of
the Lie algebra E (see [10]). This identity is true for any finite dimensional Lie algebra E
because the Hi(E)’s are the homology groups of a complex whose terms are the Λi(E)’s.
The left hand side corresponds to a product over the positive roots because Λ(A ⊕ B) =
Λ(A) ⊗ Λ(B), Λ(A) = 1 − A if A is one dimensional, and E is the sum of mult(α) one
dimensional spaces for each positive root α. For infinite dimensional Lie algebras E we
need to be careful that the infinite dimensional virtual vector spaces H(E) and Λ(E) are
well defined; in this paper they are always differences of graded vector spaces with finite
dimensional homogeneous pieces and so are well defined. It is more difficult to identify
H(E) with a sum over the Weyl group, and we do this roughly as follows. For Kac-Moody
algebras Hi(E) turns out to have dimension equal to the number of elements in the Weyl
group of length i; for finite dimensional Lie algebras this was first observed by Bott, and
was used by Kostant [26] to give a homological proof of the Weyl character formula. The
sum over the homology groups can therefore be identified with a sum over the Weyl group.
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For Kac-Moody algebras the same is true and was proved by Garland and Lepowsky [20].
For generalized Kac-Moody algebras things are a bit more complicated. The sum over the
homology groups can still be identified with a sum over the Weyl group, but the things
we sum are more complicated and contain terms corresponding to the imaginary simple
roots.

We can work out the homology groups of E explicitly provided we know the simple
roots of our Lie algebra M ; for example, the first homology group H1(E) is the sum of
the simple root spaces. For the monster Lie algebra we have worked out the simple roots
using its denominator formula, which is the product formula for the j function. In section
8 we use this to work out the homology groups of E, and they turn out to be H0(E) = R,
H1(E) =

∑
n∈Z Vnpq

n, H2(E) =
∑

m>0 Vmp
m+1, and all the higher homology groups are

0. Each homology group is a Z2-graded representation of the monster, and we use the
p’s and q’s to keep track of the grading. If we substitute these values into the formula
Λ(E) = H(E) we find that

Λ(
∑

n∈Z,m>0

Vmnp
mqn) =

∑
m

Vmp
m+1 −

∑
n

Vnpq
n.

Both sides of this are virtual graded representations of the monster. If we replace every-
thing by its dimension we recover the product formula for the j function. More generally,
we can take the trace of some element of the monster on both sides, which after some
calculation gives the identity

p−1 exp
(
−

∑
i>0

∑
m>0,n∈Z

Tr(gi|Vmn)pmiqni/i
)

=
∑
m∈Z

Tr(g|Vm)pm −
∑
n∈Z

Tr(g|Vn)qn

where Tr(g|Vn) is the trace of g on the vector space Vn.
These relations between the coefficients Tr(g|Vn) of the Thompson series are strong

enough to determine them from their first few coefficients. Norton and Koike checked that
certain modular functions of genus 0 also satisfy the same recursion relations, so we can
prove that the Thompson series Tg(q) are these modular functions of genus 0 by checking
that the first few coefficients of both functions are the same. Unfortunately this final step
of the proof (in section 9) is a case by case check that the first few coefficients are the same.
Norton has conjectured [28] that Hauptmoduls with integer coefficients are essentially the
same as functions satisfying relations similar to the ones above, and a conceptual proof or
explanation of this would be a big improvement to the final step of the proof. (It should
be possible to prove Norton’s conjecture by a very long and tedious case by case check,
because all functions which are either Hauptmoduls or which satisfy the relations above
can be listed explicitly. In [1] the authors use a computer to find all “completely replicable”
functions with integer coefficients, and they all appear to be Hauptmoduls. Roughly half
of them correspond to conjugacy classes of the monster.)

I thank J. McKay, U. Tillman, J. Lepowsky, and the referee, each of whom sent me
many useful remarks about a draft of this paper.

Notation. (In roughly alphabetical order.)
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C The complex numbers.
c(n) are the coefficients of the elliptic modular function j(q)− 744 (defined below).
cg(n) = Tr(g|Vn) is the n’th coefficient of the Thompson series Tg(q) of g.

Γ0(N) is the subgroup of matrices
(
a b
c d

)
in SL2(Z) with N |c, and Γ0(N)+ is its normalizer

in SL2(R); see [13].
δj
i is the Kronecker delta function, which is 1 if i = j and 0 otherwise.

∆(q) is the Dedekind delta function q
∏

n>0(1− qn)24 = η(q)24

E The subalgebra of a generalized Kac-Moody algebra G = F ⊕H ⊕E spanned by the
positive root spaces.

E8 The unique 8-dimensional positive definite even unimodular lattice.
ε(α) The coefficient associated with the root α in the denominator formula of s generalized

Kac-Moody algebra. See section 4.
η(q) is the Dedekind eta function q1/24

∏
n>0(1− qn). For ηg see sections 9 or 13, and for

η+, η− see section 11.
θΛ(q) =

∑
λ∈Λ q

λ2/2 = 1 + 196560q2 + . . . is the theta function of the Leech lattice Λ. For
other theta functions see section 11.

G A generalized Kac-Moody algebra; see section 4.
H The Cartan subalgebra of a generalized Kac-Moody algebra G = F ⊕H ⊕ E.

Hi(E) is a homology group of the Lie algebra E; H(E) is the alternating sum of the homology
groups of E.

II1,1 is the unique even 2-dimensional unimodular Lorentzian lattice, which has inner prod-
uct matrix

(
0 −1
−1 0

)
. Its elements are usually represented as pairs (m,n) ∈ Z2 = Z⊕Z,

and this element has norm −2mn.
II25,1 is the unique even 26-dimensional unimodular Lorentzian lattice, which is isomorphic

to Λ⊕ II1,1.
j(q) is the elliptic modular function with j(q)− 744 = q−1 +196884q+ . . . = θΛ(q)/∆(q)−

24 =
∑

n c(n)qn

Λ is the Leech lattice, the unique 24 dimensional even unimodular positive definite lattice
with no vectors of norm 2. Its elements will often be denoted by λ. For its double
cover Λ̂ see section 12.

Λ(E) is the alternating sum of the exterior powers of the vector space E.
Λi(E) is the i’th exterior power of the vector space E.

M = ⊕m,n∈ZMm,n is the monster Lie algebra with root lattice II1,1, constructed in
section 6.

MΛ is the fake monster Lie algebra, whose root lattice is II25,1.
µ(d) is the Moebius function, equal to (−1)(number of prime factors of d) if d is square

free, and 0 otherwise.
mult(r) The multiplicity of the root r.

p A formal variable. It can usually be considered as a complex number with |p| < 1.
p24(n) is the number of partitions of n into parts of 24 colours, so that

∑
n p24(1 + n)qn =

q−1
∏

n>0(1− qn)−24 = ∆(q)−1 = q−1 + 24 + 324q + 3200q2 + 25650q3 + 176256q4 +
1073720q5 + . . . . These are the multiplicities of roots of the fake monster Lie algebra
MΛ. For pg see section 14.
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q A formal variable. It can usually be thought of as a complex number with |q| < 1,
equal to e2πiτ . (I.e., the formal series usually converge for |q| < 1.)

r2 The norm (r, r) of the vector r of some lattice.
R The real numbers.
ρ is the Weyl vector of a root lattice, which by definition has the property that (ρ, r) =
−(r, r)/2 for any simple root r. (The Weyl vector is not necessarily in the root lattice,
although it does for most of the Lie algebras in this paper.) This has the opposite
sign to the usual convention for the Weyl vector, for reasons explained in section 4.
For the root lattice II25,1 = Λ⊕ II1,1 = Λ⊕ Z2 of the fake monster Lie algebra MΛ,
ρ is the vector (0, 0, 1).

σi(n) =
∑

d|n d
i is the sum of the i’th powers of the divisors of n.

Tg(q) =
∑
cg(n)qn is the Thompson series of an element g of the monster, with cg(n) =

Tr(g|Vn) where V = ⊕n∈ZVn is the module constructed by Frenkel, Lepowsky and
Meurman [16,17]. (The spaces V and Vn are denoted by V \ and V \

−n in [16].)
Tr(g|U) is the trace of an endomorphism g of a vector space U .

τ A complex number with Im(τ) > 0.
V = ⊕n∈ZVn is the monster vertex algebra discussed in section 3.

VII1,1 is the vertex algebra of the two dimensional even Lorentzian lattice II1,1 (or more
precisely the vertex algebra of its double cover).

VΛ is the the fake monster vertex algebra, which is the vertex algebra of the Leech lattice
Λ (or more precisely of its double cover Λ̂). See section 12.

W is a Weyl group. Typical elements are often denoted by w. See section 4.
Z The integers.
ψi An Adams operation on virtual group representations, defined by Tr(g|ψi(V )) =

Tr(gi|V ) for V a virtual representation of a group containing g.
ω A Cartan involution (section 4) or a conformal vector of a vertex algebra (section 3).

2 Introduction (continued).

We describe the results in the second half of the paper (sections 10 to 14). This section
can be omitted by those who are only interested in the proof of theorem 1.1.

We construct several Lie superalgebras which are similar to the monster Lie algebra.
One method of constructing these is to consider the “twisted” denominator formulas of
the monster Lie algebra as untwisted denominator formulas of some other Lie algebras or
superalgebras; these seem to be related to other sporadic simple groups. A second method
of constructing some of them is to replace the monster vertex algebra V by the vertex
algebra of the Leech lattice VΛ. From this we get the fake monster Lie algebra [8] (where
it is called the monster Lie algebra) and several variations of it.

The Lie superalgebras we construct form two families as follows:
(1) A Lie algebra or superalgebra of rank 2 for many conjugacy classes g of the monster

simple group. The monster Lie algebra is the one corresponding to the identity element
of the monster. The ones corresponding to other elements of the monster are often
related to other sporadic simple groups.

(2) A Lie superalgebra for many of the conjugacy classes of the group Aut(Λ̂) = 224.2.Co1,
where Λ̂ is the standard double cover of the Leech lattice Λ (defined in section 12),
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Aut(Λ̂) is the group of its automorphisms which preserve the inner product on Λ, and
Co1 = Aut(Λ)/Z2 is one of Conway’s sporadic simple groups. (The symbol A.B where
A and B are groups stands for some extension of B by A, i.e., a group with a normal
subgroup A such that the quotient by A is B; the notation is ambiguous.) For example,
we get Lie algebras of ranks 26, 18, and 14 corresponding to certain automorphisms
of Λ̂ of orders 1, 2, and 3, and a Lie superalgebra of rank 10 corresponding to an
automorphism of order 2. The Lie algebra of rank 26 is what we now call the fake
monster Lie algebra and is studied in [8] (where it is called the monster Lie algebra,
because the genuine monster Lie algebra had not been discovered then).
All of these algebras are generalized Kac-Moody algebras or superalgebras. Their root

multiplicities can be described explicitly in terms of the coefficients of a finite number of
modular forms of weight at most 0. (These modular forms are holomorphic on the upper
half plane, and are meromorphic but not necessarily holomorphic at the cusps.) More
precisely, there is a sublattice L of finite index in the root lattice, and for each coset of
L in the root lattice there is a modular form, which is holomorphic except at the cusps
and of weight 1− dim(L)/2, such that the root multiplicity of a vector r in a given coset
is the coefficient of q−(r,r)/2 of the corresponding modular form. All the algebras have
Weyl vectors ρ with norm ρ2 = (ρ, ρ) = 0, and the simple roots are the roots r with
(r, ρ) = −(r, r)/2. In particular the simple roots and root multiplicities can be described
explicitly, and we use this to obtain some infinite product identities from the denominator
formulas of these algebras. These algebras are closely related to the sporadic simple groups.

We now discuss both of these families of Lie algebras in more detail. We recall from
section 1 that the monster Lie algebra M , is a generalized Kac-Moody algebra whose
denominator formula is

p−1
∏
m>0
n∈Z

(1− pmqn)c(mn) = j(p)− j(q). (2.1)

In section 10 we construct a similar Lie superalgebra for many elements g of the monster.
In this case the denominator formula is

p−1
∏
m>0
n∈Z

(1− pmqn)mult(m,n) = Tg(p)− Tg(q) (2.2)

where Tg(q) =
∑

Tr(g|Vn)qn is the Thompson series of the element g, and the multiplicity
mult(m,n) of the root (m,n) is given by

mult(m,n) =
∑

ds|(m,n)

µ(d)Tr(gs|Vmn/d2s2)/ds (2.3)

where µ(d) is the Moebius function, equal to (−1)(number of prime factors of d) if d is
square free, and 0 otherwise. (The symbol (m,n) under the summation sign means the
greatest common divisor of m and n, rather than the ordered pair.) For example, if N
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is a squarefree integer such that the full normalizer Γ0(N)+ of Γ0(N) has genus 0 then a
special case of (2.2) is

p−1
∏
m>0
n∈Z

∏
d|(m,n,N)

(1− pmqn)cN (mn/d) = TN (p)− TN (q) (2.4)

where TN (q) =
∑

n cN (n)qn is the normalized generator of the function field of Γ0(N)+
with leading terms q−1 + 0 + cN (1)q + . . ..

In section 11 to 14 we construct a second series of Lie superalgebras, which are similar
to the algebras above except that they are related to the vertex algebra VΛ of the Leech
lattice Λ instead of the monster vertex algebra V . The largest of these, which plays
the same role for this series as the monster Lie algebra plays for the previous series, is
the algebra which used to be called the monster Lie algebra in [8] and is now called the
fake monster Lie algebra. (The Kac-Moody algebra whose Dynkin diagram is that of
the reflection group of II25,1 has also been called the monster Lie algebra ([7]); it is a
large subalgebra of the fake monster Lie algebra, and does not seem to be interesting,
except as an approximation to the fake monster Lie algebra.) The root lattice of the fake
monster Lie algebra is the 26 dimensional even unimodular Lorentzian lattice II25,1, and
its denominator formula is

eρ
∏

r∈Π+

(1− er)p24(1−r2/2) =
∑

w∈W

det(w)w(eρ
∏
n>0

(1− enρ)24).

Here ρ is a norm 0 Weyl vector for the reflection group W of II25,1, Π+ is the set of
positive roots, which is the set of vectors r of norm at most 2 which are either positive
multiples of ρ or have negative inner product with ρ, p24(1 − r2/2) is the multiplicity of
the root r and is equal to the number of partitions of the integer 1− (r, r)/2 into parts of
24 colours, and the simple roots are the norm 2 vectors r with (r, ρ) = −1 together with
24 copies of each positive multiple of ρ. This Lie algebra was first constructed in [3], and
the properties stated above were proved in [8]; this construction depended heavily on the
ideas in Frenkel [15].

The fake monster Lie algebra is acted on by the group 224.2.Co1 in the same way that
the monster Lie algebra is acted on by the monster group, and we construct a superalgebra
for many elements of 224.2.Co1 from the fake monster Lie algebra in the same way that we
construct a superalgebra for every element of the monster from the monster Lie algebra.
Some of the more interesting algebras we get in this way are a fake baby monster algebra
of rank 18, a fake Fi24 Lie algebra of rank 14 associated with Fischer’s sporadic simple
group Fi24, a fake Co1 superalgebra of rank 10 associated with Conway’s sporadic simple
group Co1, and several Lie algebras of smaller rank corresponding to some of the other
sporadic simple groups involved in the monster.

The superalgebra of rank 10 is particularly interesting, so we describe it explicitly. It
is the superalgebra associated with an element g of Aut(Λ̂) which has order 2 and fixes
an 8-dimensional sublattice of Λ, isomorphic to the lattice E8 with all norms doubled. Its
root lattice L is the dual of the sublattice of even vectors of I9,1, so that L is a nonintegral
lattice of determinant 1/4 all of whose vectors have integral norm. We represent vectors
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of L as triples (v,m, n), where v ∈ E8 and m,n ∈ Z, and (v,m, n) has norm v2 − 2mn.
The lattice I9,1 is then the set of vectors (v,m, n) with m+ n even. We let ρ be the norm
0 vector (0, 0, 1). We let the Weyl group W be the subgroup of Aut(L) generated by the
reflections of norm 1 vectors, so that the simple roots of W are the norm 1 vectors r with
(r, ρ) = −1/2. (Note that W is not the full reflection group of L, as L also has roots of
norm 2.)

The simple roots of our superalgebra are the simple roots of W , together with the pos-
itive multiples nρ (n > 0) of ρ, each with multiplicity 8(−1)n. Here we use the convention
that multiplicity −k < 0 means a superroot of multiplicity k, so that the odd multiples of ρ
are superroots. In general the vector (v,m, n) is an ordinary root or a superroot depending
on whether m+ n is even or odd, so the ordinary roots are those in the sublattice I9,1 of
L.

The multiplicity of the root r = (v,m, n) ∈ L is equal to

mult(r) = (−1)(m−1)(n−1)pg((1− r2)/2) = (−1)m+n|pg((1− r2)/2)|,

where pg(n) is defined by∑
pg(n)qn = q−1/2

∏
n>0

(1− qn/2)−(−1)n8

and as before negative multiplicity means a superroot. The denominator formula for this
Lie superalgebra is

eρ
∏

r∈Π+

(1− er)mult(r) =
∑

w∈W

det(w)w(eρ
∏
n>0

(1− enρ)(−1)n8).

Similarly the denominator formula for the fake baby monster Lie algebra of rank 18
is

eρ
∏

r∈L+

(1−er)pg(1−r2/2)
∏

r∈2L′+

(1−er)pg(1−r2/4) =
∑

w∈W

det(w)w(eρ
∏
i>0

(1−eiρ)8(1−e2iρ)8)

where L is the Lorentzian lattice which is the sum of the 16-dimensional Barnes-Wall
lattice Λ2 [12] and the two dimensional even Lorentzian lattice II1,1, W is its reflection
group which has Weyl vector ρ, L′ is the dual of L and pg is defined by

∑
n pg(n)qn =∏

n>0(1− qn)−8(1− q2n)−8. This Lie algebra is associated with an element g of order 2 of
Aut(Λ̂) which fixes a 16-dimensional lattice of Λ isomorphic to the Barnes-Wall lattice.

There are similar Lie superalgebras associated with many other elements of Aut(Λ̂),
which have denominator formulas similar to those above.

3 Vertex algebras.

We give a brief summary of the facts about vertex algebras that we use and list the
properties of the monster vertex algebra that we need. For more information about vertex
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algebras, see [3], [9], [16], or [18]; the last two references contain proofs of the results quoted
here.

A vertex algebra over the real numbers (which is the only case we use in this paper)
is a vector space V over the real numbers with an infinite number of bilinear products,
written unv for u, v ∈ V, n ∈ Z, such that
(1) unv = 0 for n sufficiently large (depending on u and v).
(2) ∑

i∈Z

(
m

i

)
(uq+iv)m+n−iw =

∑
i∈Z

(−1)i

(
q

i

)
(um+q−i(vn+iw)− (−1)qvn+q−i(um+iw))

for all u, v, and w in V and all integers m, n and q.
(3) There is an element 1 ∈ V such that vn1 = 0 if n ≥ 0 and v−11 = v.

We often think of un as a linear map from V to V , taking v to unv. In [16,18] these
operators are combined into the “vertex operator” V (u, z) =

∑
n∈Z unz

−n−1, which is an
operator valued formal Laurent series in z.

For example, if V is a commutative algebra over R with derivation D then we can
make it into a vertex algebra by defining unv to be D−n−1(u)v/(−n−1)! for n < 0 and 0 for
n ≥ 0, and conversely any vertex algebra over R for which unv = 0 whenever n ≥ 0 arises
from a commutative algebra in this way. These are the only finite dimensional examples
of vertex algebras, and seem to be the only examples which are easy to construct. The
vertex algebras we use here do not have this property and are much harder to construct;
for example the detailed construction of the monster vertex algebra in [16] takes up most
of a rather long book. Fortunately the details of this construction are not important for
this paper, so at the end of this section we list the properties of it that we need.

We define the operator D of a vertex algebra by D(v) = v−21. (In [16] and [18] D is
denoted by L−1.) The vector space V/DV is a Lie algebra, where the bracket is defined
by [u, v] = u0v and DV is the image of V under D.

There is a vertex algebra VL associated with any even lattice L (or more precisely
with a certain central extension L̂ of L by a group of order 2), which is constructed in
[3]. The underlying vector space of this vertex algebra is the tensor product of the twisted
group ring Q(L̂) of the double cover L̂ of L (see section 12) and the ring of polynomials
S(⊕i>0Li) over the sum of an infinite number of copies Li of L ⊗ R. We often use the
vertex algebra VII1,1 of the 2-dimensional even unimodular Lorentzian lattice II1,1. There
is also a monster vertex algebra V ([3], [16]) which is acted on naturally by the monster
sporadic simple group. (The referee has asked me to explain why I have never published
my (long and messy) proof of the assertion in [3] that the module V constructed in [17] has
the structure of a vertex algebra. The reason is that my proof used many results from the
announcement [17], and the only published proof of this announcement, given in the book
[16], incorporates the fact that V is a vertex algebra.) The underlying vector space of the
monster vertex algebra is a graded vector space V = ⊕n∈ZVn, with homogeneous pieces
of dimensions 1, 0, 196884, ... equal to the coefficients of the elliptic modular function
j(q)− 744.

A conformal vector of dimension (or “central charge”) c ∈ R of a vertex algebra V
is defined to be an element ω of V such that ω0v = D(v) for any v ∈ V , ω1ω = 2ω,
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ω3ω = c/2, ωiω = 0 if i = 2 or i > 3, and any element of V is a sum of eigenvectors of the
operator L0 = ω1 with integral eigenvalues. If v is an eigenvector of L0, then its eigenvalue
is called the (conformal) weight of v. If v is an element of the monster vertex algebra V
of conformal weight n, we sometimes say that v has degree n− 1 (= n− c/24).

The vertex algebra of any c-dimensional even lattice has a canonical conformal vector
of dimension c, and the monster vertex algebra has a conformal vector of dimension 24. If
ω is a conformal vector of a vertex algebra V then we define operators Li on V for i ∈ Z
by

Li = ωi+1.

These operators satisfy the relations

[Li, Lj ] = (i− j)Li+j +
(
i+ 1

3

)
c

2
δi
−j

and so make V into a module over the Virasoro algebra. The operator L−1 is equal to D.
We define the space P i to be the space of vectors w ∈ V such that L0(w) = iw, Li(w) = 0
if i > 0. The space P 1/(DV ∩P 1) is a subalgebra of the Lie algebra V/DV , which is equal
to P 1/DP 0 for the vertex algebras we use in this paper.

The vertex algebra of any even lattice and the monster vertex algebra both have
a real valued symmetric bilinear form (,) such that the adjoint of the operator un is
(−1)i

∑
j≥0 L

j
1(ω(u))2i−j−n−2/j! if u has degree i, where ω is the automorphism of the

vertex algebra defined by ω(ew) = (−1)(w,w)/2(ew)−1 for ew an element of the twisted
group ring of L corresponding to the vector w ∈ L, or is 1 in the case of the monster
vertex algebra. (There is an unfortunate clash of notation here, because ω is the standard
notation for both the conformal vector and the Cartan automorphism of a Lie algebra. If
L is the root lattice of a finite dimensional Lie algebra of type An, Dn, E6, E7, or E8 then
the Lie algebra is a subalgebra of the vertex algebra of L and the involution ω defined
above restricts to the Cartan automorphism of the Lie algebra.) If a vertex algebra has a
bilinear form with the properties above we say that the bilinear form is compatible with
the conformal vector.

Frenkel, Lepowsky, and Meurman [16] use “vertex operator algebras”, rather than
vertex algebras, so we explain what the difference is. A vertex operator algebra is a vertex
algebra with a conformal vector such that the eigenspaces of L0 are all finite dimensional
with nonnegative integral eigenvalues. For example, the monster vertex algebra is a vertex
operator algebra. (Its conformal vector spans the subspace of V1 fixed by the monster.)
The vertex algebras used in this paper all have conformal vectors but the eigenspaces of L0

are not always finite dimensional. An example of a vertex algebra without these properties
is the vertex algebra VII1,1 of the 2-dimensional even unimodular Lorentzian lattice II1,1.

If V and W are vertex algebras, then their tensor product V ⊗W as vector spaces
is also a vertex algebra, if (a⊗ b)n(c⊗ d) is defined to be

∑
i∈Z(aic)⊗ (bn−1−id) and the

identity 1 is defined to be 1⊗1. (See [18].) If V and W have conformal vectors ωV and ωW

of dimensions m and n then ωV ⊗ 1+1⊗ωW is a conformal vector of V ⊗W of dimension
m + n. If V and W have bilinear forms compatible with the conformal vectors then so
does V ⊗W ; in fact the obvious bilinear form on the tensor product will do.
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The monster vertex algebra V [3, 16] is a vertex algebra acted on by the monster. The
construction given in [16] is rather long, but fortunately we do not need to know many
details of its construction. We list the three properties of it we do use, in case anyone finds
a simpler construction of it that they wish to prove also satisfies Conway and Norton’s
moonshine conjectures.

(1) V is a vertex algebra over R with a conformal vector ω of dimension 24 and a
positive definite bilinear form such that the adjoint of un is given by the expression above
(with the automorphism ω acting trivially).

(2) V is a sum of eigenspaces Vi of the operator L0, where Vi is the eigenspace on which
L0 has eigenvalue i + 1, and the dimension of Vi is given by

∑
dim(Vi)qi = j(q) − 744 =

q−1 + 196884q + . . ..
These two conditions turn out to imply that if g is any automorphism of V preserving

the vertex algebra structure, the conformal vector and the bilinear form then
∑

Tr(g|Vi)qi

is a completely replicable function (which means that identity (8.3) holds).
(3) The monster simple group acts on V , preserving the vertex algebra structure,

the conformal vector ω and the bilinear form. The first few representations Vi of the
monster (after V−1 = χ1, V0 = 0) decompose as V1 = χ1 + χ2, V2 = χ1 + χ2 + χ3,
V3 = 2χ1 + 2χ2 +χ3 +χ4, V5 = 4χ1 + 5χ2 + 3χ3 + 2χ4 +χ5 +χ6 +χ7 where χi, 1 ≤ i ≤ 7
are the first seven irreducible representations of the monster, indexed in order of increasing
dimension.

The construction of the vector space V and the action of the monster on it, preserving
a small part of the vertex algebra structure, were announced in [17], and the vertex algebra
structure was announced in [3]. The results quoted above have all been proved in [16] and
[18], apart from the explicit description of the representations in (3). We show in section
9 that condition (3) can be proved using the explicit description in [16] of the traces of
certain elements of the monster acting on V . In the course of proving theorem 1.1 we show
that these three conditions characterize V as a graded representation of the monster.

4 Generalized Kac-Moody algebras

We summarize the results about generalized Kac-Moody algebras that we use, which
can be found in [4], [5], [20], and the third edition of Kac’s book [23]. We modify the
original definition of generalized Kac-Moody algebras in [4] slightly so that these algebras
are closed under taking universal central extensions, as in [5]. (This is not necessary for
the proof of theorem 1.1, but makes the converse to theorem 4.1 slightly neater.) All Lie
algebras are Lie algebras over the reals.

A Lie algebra G is defined to be a (split) generalized Kac-Moody algebra if it has an
almost positive definite contravariant bilinear form, which means that G has the following
three properties.

1. G can be Z-graded as G = ⊕i∈ZGi and Gi is finite dimensional if i 6= 0.
2. G has an involution ω which maps Gi into G−i and acts as −1 on G0, so in particular
G0 is abelian.

3. G has an invariant bilinear form (,) invariant under ω such that Gi and Gj are orthog-
onal if i 6= −j, and such that −(g, ω(g)) > 0 if g is a nonzero homogeneous element
of G of nonzero degree.
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The bilinear form (, )0 defined by (a, b)0 = −(a, ω(b)) is called the contravariant bilin-
ear form of G, and is positive definite on Gi if i 6= 0. For example any finite dimensional
split semisimple Lie algebra over the reals has these properties, with ω equal to a Cartan
involution, (,) equal to the Killing form, and the grading determined by the eigenvalues
of some suitably normalized regular element. (If the contravariant bilinear form on G is
positive semidefinite, then G is essentially a sum of affine, Heisenberg, and finite dimen-
sional simple split Lie algebras.) In general the contravariant form can be indefinite on
G0. For the algebras we use in this paper the subalgebra G0 has a vector such that the
contravariant form is positive semidefinite on its orthogonal complement.

Suppose that aij , i, j ∈ I is a symmetric countable (possibly infinite) real matrix such
that aij ≤ 0 if i 6= j and such that if aii > 0 then 2aij/aii is an integer for any j. Then
the universal generalized Kac-Moody algebra G of this matrix is defined to be the Lie
algebra generated by elements ei, fi, hij for i, j ∈ I satisfying the following relations. (It
is true but not obvious that any universal generalized Kac-Moody algebra is a generalized
Kac-Moody algebra; this fact is not needed in this paper.)

1. [ei, fj ] = hij

2. [hij , ek] = δj
i aikek, [hij , fk] = −δj

i aikfk

3. If aii > 0 and i 6= j then ad(ei)nej = ad(fi)nfj = 0, where n = 1− 2aij/aii.
4. If aii ≤ 0, ajj ≤ 0 and aij = 0 then [ei, ej ] = [fi, fj ] = 0.

We often write hi for hii. There is a unique invariant bilinear form on this algebra
such that (ei, fj) = δj

i ; this implies that (hi, hj) = aij .
Remark. If aii > 0 for all i ∈ I then this algebra is the same as the Kac-Moody

algebra with symmetrized Cartan matrix aij . In general these algebras have almost all the
properties that Kac-Moody algebras have, and the only major difference is that generalized
Kac-Moody algebras are allowed to have imaginary simple roots.

The main theorem about generalized Kac-Moody algebras [4,5] says that they can all
be obtained from universal generalized Kac-Moody algebras.

Theorem 4.1. Suppose that G is a generalized Kac-Moody algebra with some given
grading, involution ω and bilinear form (,). Then there is a unique universal generalized
Kac-Moody algebra, graded by putting deg(ei) = −deg(fi) = ni for some positive integers
ni, with a homomorphism f (not necessarily unique) to G such that

(1) f preserves the gradings, involutions and bilinear forms (where the universal gener-
alized Kac-Moody algebra is given the grading, involution and bilinear form defined
above).

(2) The kernel of f is in the centre of the universal generalized Kac-Moody algebra (which
is contained in the abelian subalgebra spanned by the elements hij).

(3) The image of f is an ideal of G, and G is the semidirect product of this subalgebra and
a subalgebra of the abelian subalgebra G0. Moreover the images of all the generators
ei and fi are eigenvectors of G0.

Remark. The converse of this theorem is also true (but not needed here): any universal
generalized Kac-Moody algebra with a countable number of simple roots is a generalized
Kac-Moody algebra. (The proof of this converse in [4] contains a gap which was pointed
out and corrected by Kac in [23].) Theorem 4.1 says that we can construct any generalized
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Kac-Moody algebra from some universal generalized Kac-Moody algebra by factoring out
some of the centre and adding a commuting algebra of outer derivations.

We list some of the properties of universal generalized Kac-Moody algebras G from
[4] and [5], many of which are also proved in the third edition of [23].

(1) The element hij is 0 unless the i’th and j’th columns of a are equal. The elements
hij for which the i’th and j’th columns of a are equal form a basis for an abelian subalgebra
H of G, called its Cartan subalgebra. In the case of Kac-Moody algebras, the i’th and
j’th columns of a cannot be equal unless i = j, so the only nonzero elements hij are those
of the form hii, which are usually denoted by hi. Every nonzero ideal of G has nonzero
intersection with H. The centre of G is contained in H and contains all the elements hij

for i 6= j.
(2) The root lattice is defined to be the free abelian group generated by elements ri

for i ∈ I, with the bilinear form given by (ri, rj) = aij . The elements ri are called the
simple roots. The universal generalized Kac-Moody algebra is graded by the root lattice
if we let ei have degree ri and fi have degree −ri. There is a natural homomorphism of
abelian groups from the root lattice to the Cartan subalgebra H taking ri to hi which
preserves the bilinear forms. If r is in the root lattice then the vector space of elements
of the Lie algebra of that degree is called the root space of r; if r is nonzero and has a
nonzero root space then r is called a root of the generalized Kac-Moody algebra. A root
r is called positive if it is a sum of simple roots, and negative otherwise. It is called real if
it has positive norm (r, r) and imaginary otherwise.

(3) The Weyl vector ρ is the additive map from the root lattice to R taking ri to
−(ri, ri)/2 for all i ∈ I. (This is the opposite sign from the usual definition.) We write
its value on a root r as (ρ, r). The fundamental Weyl chamber (which we call the Weyl
chamber for short, because it is the only one we use) is the set of vectors v of the Cartan
subalgebra H with (v, ri) ≤ 0 for all real simple roots ri, where we identify real simple
roots with their images in H. (There is a misprint in the definition of Weyl chamber in
[4]; the word “real” in “real simple roots” was omitted.)

Remark. The reason why we use nonstandard sign conventions for the Weyl vector
and Weyl chamber is that we are using the convention that “everything should be in the
Weyl chamber if possible”. We want the imaginary simple roots to be in the Weyl chamber
which forces us to use the opposite Weyl chamber from usual; similarly we change the sign
of the Weyl vector to get it (or rather its image in H, when this exists) in the Weyl
chamber, and we use lowest weight modules (rather than highest weight modules) because
their lowest weights are in the Weyl chamber. For most of the generalized Kac-Moody
algebras in this paper the Cartan subalgebra has a Lorentzian bilinear form, so that the
vectors of norm at most 0 form two solid cones; our sign conventions usually make all the
interesting vectors of norm at most 0 lie in the same solid cone.

(4) If a has no zero columns then G is perfect and equal to its own universal central
extension. If a is not the direct sum of two smaller matrices, not the 1 × 1 zero matrix,
and not the matrix of an affine Kac-Moody algebra, then G modulo its centre is simple.

(5) Suppose we choose a positive integer ni for each i ∈ I. Then we can grade G by
putting deg(ei) = −deg(fi) = ni. The degree 0 piece of G is the Cartan subalgebra H.

(6) G has an involution ω with ω(ei) = −fi, ω(fi) = −ei, called the Cartan involution.
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There is a unique invariant bilinear form (,) on G such that (ei, fi) = 1 for all i, and it
also has the property that −(g, ω(g)) > 0 whenever g is a homogeneous element of nonzero
degree. In particular the universal generalized Kac-Moody algebra of any matrix as above
is a generalized Kac-Moody algebra.

(7) There is a character formula for the simple lowest weight module Mλ of G with a
lowest weight λ in the real vector space of the root lattice such that (λ, ri) ≤ 0 for i ∈ I
and 2(λ, ri)/(ri, ri) is integral if the simple root ri is real. This states that

Ch(Mλ)eρ
∏
α>0

(1− eα)mult(α) =
∑

w∈W

det(w)w(eρ
∑
α

ε(α)eα+λ)

The only case of this we need is for the trivial one dimensional module with λ = 0, when
it becomes the denominator formula

eρ
∏
α>0

(1− eα)mult(α) =
∑

w∈W

det(w)w(eρ
∑
α

ε(α)eα)

Here ρ is the Weyl vector, α > 0 means α is a positive root, and W is the Weyl
group, which is the group of isometries of the root lattice generated by the reflections
corresponding to the real simple roots. If w ∈ W then det(w) is defined to be +1 or −1
depending on whether w is the product of an even or odd number of reflections; if the root
lattice is finite dimensional this is just the usual determinant of w acting on it. We define
ε(α) for α in the root lattice to be (−1)n if α is the sum of a set of n pairwise orthogonal
imaginary simple roots that are all orthogonal to λ, and 0 otherwise. If G is a Kac-Moody
algebra then there are no imaginary simple roots so the sum over α is 1 and we recover
the usual character and denominator formulas.

If we have a generalized Kac-Moody algebra G then we choose some universal gener-
alized Kac-Moody algebra mapping to G as in theorem 4.1, and call the Weyl group, root
lattice, and so on of the universal generalized Kac-Moody algebra the Weyl group, root
lattice and so on of G.

For the generalized Kac-Moody algebras in this paper, the Cartan subalgebra H is
usually finite dimensional and its bilinear form is nonsingular. We often think of roots of
G as vectors of H by using the natural map from the root lattice to H, taking ri to hi. We
will often abuse terminology and call the corresponding vectors of H roots. The map from
the set of roots to H is not usually injective, so we need to make a few comments to clarify
what happens. It is possible for n > 1 imaginary simple roots to have the same image r
in H; when this happens we say that r is a simple root of multiplicity n. (In general it is
possible for the same vector of H to be the image of simple and nonsimple roots, but this
does not happen for the Lie algebras in this paper.) The simple roots in H are usually
linearly dependent so in general there is no reason why there should exist a Weyl vector ρ
in H such that (ρ, ri) = −r2i /2 for all real simple roots ri; however such a vector ρ does
exist for the Lie algebras in this paper.

The denominator formula also needs an obvious modification if we think of the roots
as elements of H. If a simple root has multiplicity n > 1 then the “set” of simple roots
should include n copies of it, i.e., the “set” of simple roots is really a “multiset” rather
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than a set. (A multiset is a “set which may contain several copies of the same object”,
or more precisely a map from a set to the positive integers.) The expression ε(α) in the
character formula is then the sum of terms (−1)n for all ways of writing α as a sum of
a “set” (or more precisely a multiset) of pairwise orthogonal imaginary simple roots that
are all orthogonal to λ. For example, if there is only one simple root r of norm 0 and
multiplicity n, then ε(ir) =

(
n
i

)
(−1)i because there are

(
n
i

)
ways of writing ir as a sum of

a multiset of pairwise orthogonal simple roots.
Remark. Most of these results can be extended to superalgebras with little diffi-

culty, provided that we interpret roots of negative multiplicity as being “superroots”. The
only extra detail worth pointing out is that we have to add the condition that all simple
superroots are imaginary (and not real). For example, many of the finite dimensional
superalgebras are generalized Kac-Moody superalgebras with simple superroots of norm
0. Warning: The Cartan matrix of a finite dimensional superalgebra may depend on the
Z-grading chosen.

Any generalized Kac-Moody algebra can be written as a direct sum E⊕H⊕F of subal-
gebras, where H is the Cartan subalgebra and E and F are the subalgebras corresponding
to the positive and negative roots. The standard sequence

. . .→ Λ2(E) → Λ1(E) → Λ0(E) → 0

whose homology groups are those of the Lie algebra E [10] shows that Λ(E) = H(E), where
Λ(E) is the virtual vector space Λ0(E)	Λ1(E)⊕Λ2(E) . . . formed from the alternating sum
of the exterior powers of E, andH(E) is the virtual vector spaceH0(E)	H1(E)⊕H2(E) . . .
formed from the alternating sum of the homology groups of E with real coefficients. If
L is the root lattice of M , then both sides are L-graded virtual vector spaces whose
homogeneous pieces are finite dimensional, so these infinite sums are meaningful.

The denominator formula for any generalized Kac-Moody algebra follows from the
fact that Λ(E) = H(E) as virtual L-graded vector spaces. The character of Λ(E) is a
product over positive roots. In the case of ordinary Kac-Moody algebras the vector space
Hi(E) has a basis corresponding to the elements of the Weyl group of length i, so the
character of H(E) is a sum over the Weyl group. If we work out everything explicitly we
obtain the denominator formula

eρ
∏
α>0

(1− eα)mult(α) =
∑

w∈W

det(w)w(eρ)

for Kac-Moody algebras, and a similar but slightly more complicated calculation gives the
denominator formula for generalized Kac-Moody algebras. For Kac-Moody algebras this
calculation is carried out in Garland and Lepowsky [20] and most of their methods and
results apply to generalized Kac-Moody algebras with only minor changes. They obtain
a more general result which not only gives the character formula of any highest weight
module, but also works if E is replaced by various other radicals of parabolic subalgebras.
We do not need these more general results, but they are easily extended to the case of
generalized Kac-Moody algebras.

The groups Hi(E) can be calculated for generalized Kac-Moody algebras in the same
way that they are calculated for ordinary Kac-Moody algebras in Garland and Lepowsky
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[20]. The result we get is that Hi(E) is the subspace of Λi(E) spanned by the homoge-
neous vectors of Λi(E) whose degrees r ∈ L satisfy (r + ρ)2 = ρ2. The degree r of any
homogeneous vector of Λi(E) satisfies (r+ ρ)2 ≤ ρ2, so Hi(E) can be thought of as a sort
of boundary of Λi(E). These homology groups are easy to work out for any generalized
Kac-Moody algebra, provided that we know the simple roots and their multiplicities. For
the monster Lie algebra, we carry out this calculation in section 8.

In practice it is sufficient to know the subspace of H(E) of elements whose degree r has
the property that r+ρ is in the fundamental Weyl chamber. This subspace is isomorphic to
the subspace of Λ(E) of all elements that can be written in the form e1∧e2∧ . . . where the
ei’s are vectors in the root spaces of pairwise orthogonal imaginary simple roots, so that
the character of this subspace is just the sum

∑
α ε(α)eα that appears in the denominator

formula. There is a similar description of the homology groups of E with coefficients in
any lowest weight module which can be used to prove the character formula for lowest
weight modules, but we do not use this.

5 The no-ghost theorem

We prove a slight extension of the no-ghost theorem. The idea of using the no-ghost
theorem to prove results about Kac-Moody algebras appears in Frenkel’s paper [15], which
also contains a proof of the no-ghost theorem. The original proof of Goddard and Thorn
[21] works for the cases we need with only trivial modifications. For convenience we give
a quick sketch of their proof.

Theorem 5.1. (The no-ghost theorem.) Suppose that V is a vector space with a nonsin-
gular bilinear form (,) and suppose that V is acted on by the Virasoro algebra in such a
way that the adjoint of Li is L−i, the central element of the Virasoro algebra acts as mul-
tiplication by 24, any vector of V is a sum of eigenvectors of L0 with nonnegative integral
eigenvalues, and all the eigenspaces of L0 are finite dimensional. We let V i be the subspace
of V on which L0 has eigenvalue i. Assume that V is acted on by a group G which preserves
all this structure. We let VII1,1 be the vertex algebra of the double cover ÎI1,1 of the two
dimensional even unimodular Lorentzian lattice II1,1 (so that VII1,1 is II1,1-graded, has a
bilinear form (,), and is acted on by the Virasoro algebra as in section 3). We let P 1 be
the subspace of the vertex algebra V ⊗ VII1,1 of vectors v with L0(v) = v, Li(v) = 0 for
i > 0, and we let P 1

r be the subspace of P 1 of degree r ∈ II1,1. All these spaces inherit
an action of G from the action of G on V and the trivial action of G on VII1,1 and R2.
Then the quotient of P 1

r by the nullspace of its bilinear form is naturally isomorphic, as a
G module with an invariant bilinear form, to V 1−(r,r)/2 if r 6= 0 and to V 1 ⊕R2 if r = 0.

The name “no-ghost theorem” comes from the fact that in the original statement of
the theorem in [21], V was part of the underlying vector space of the vertex algebra of a
positive definite lattice so the inner product on V i was positive definite, and thus P 1

r had
no ghosts (i.e. vectors of negative norm) for r nonzero. The space V i is the space Vi−1

used in the rest of this paper.
Sketch of proof (taken from Goddard and Thorn, [21]). Fix some nonzero r ∈ II1,1

and some norm 0 vector w in II1,1 with (r, w) 6= 0.

19



We use the following operators. We have an action of the Virasoro algebra on V ⊗VII1,1

generated by its conformal vector. The operators Li of the Virasoro algebra satisfy the
relations

[Li, Lj ] = (i− j)Li+j + 26(i3 − i)δi
−j/12.

and the adjoint of Li is L−i. (The 26 comes from the 24 in theorem 5.1 plus the dimension
of II1,1.) We define operators Ki, i ∈ Z by Ki = vi−1 where v is the element e−w

−2 e
w of the

vertex algebra of II1,1, and ew is an element of the group ring of the double cover of II1,1

corresponding to w ∈ II1,1 and e−w is its inverse. (There are in fact two possible choices
for ew which differ by a factor of −1, but it does not matter which we choose because this
factor of −1 cancels out in the expression e−w

−2 e
w.) These operators satisfy the relations

[Li,Kj ] = −jKi+j

[Ki,Kj ] = 0

because w has norm 0, and the adjoint of Ki is K−i.
We define the following subspaces of V ⊗ VII1,1 .

H is the subspace of V ⊗ VII1,1 of degree r ∈ II1,1. H1 is its subspace of vectors h with
L0(h) = h.

P , is the subspace of H of all vectors h with Li(h) = 0 for i > 0. P 1 = H1 ∩ P .
S, the space of spurious vectors, is the subspace of H of vectors perpendicular to P .

S1 = H1 ∩ S.
N = S ∩ P is the radical of the bilinear form of P , and N1 = H1 ∩N .
T , the transverse space, is the subspace of P annihilated by all the operators Ki, i > 0,

and T 1 = H1 ∩ T .
K is the space generated by the action of the operators Ki, i ∈ Z on T .

V er is the subspace V ⊗ er of H.
We have the following inclusions of subspaces of H:

S P K
↖ ↗ ↖ ↗ ↖

N T V er

and we construct the isomorphism from V 1−(r,r)/2 to P 1/N∩P 1 by zigzagging up and down
this diagram; more precisely we show that V er and T are both isomorphic to K modulo
its nullspace, and then we show that T 1 is isomorphic to P 1 modulo its nullspace P 1 ∩N .

Lemma 5.1. If f is a vector of nonzero norm in T then the vectors of the form

Lm1Lm2 . . .Kn1Kn2 . . . (f)

for all sequences of integers with 0 > m1 ≥ m2 . . ., 0 > n1 ≥ n2 . . . are linearly independent
and span a space invariant under the operators Ki and Li on which the bilinear form is
nonsingular.

Sketch of proof: It is possible to order these elements so that the matrix of inner
products is upper triangular with nonzero diagonal elements. This implies that they are
independent and span a space on which the inner product is nonsingular. The other
statements in the lemma are easy to prove.

20



Lemma 5.2. The bilinear form on T is nonsingular, and K is the direct sum of T and
the nullspace of K.

Proof. If we choose an orthogonal basis for T , then the set of all vectors generated
from them as in Lemma 5.1 is a basis for H. As H is nonsingular, T must therefore also be
nonsingular. It now follows that K is the direct sum of its nullspace and T , because K is
generated from T by the operators Ki and anything generated from T by these operators
is in the nullspace of K.

Lemma 5.3. V er is naturally isomorphic to T .

Proof. K is also the subspace of H annihilated by all the operators Ki, i > 0 from
which it follows that K is the direct sum of V er and the nullspace of K. By lemma 5.2
K is also the direct sum of T and the nullspace of K, so this gives a natural isomorphism
from V er to T , because they are both isomorphic to the quotient of K by its nullspace.

Lemma 5.4. The associative algebra generated by the elements Li for i < 0 is generated
by elements mapping S1 into S.

Proof. Calculation shows that the operators L−1 and L−2+3L2
−1/2 have this property,

and they generate the algebra generated by all Li’s with i < 0. (It is in doing these
calculations that we need to use the fact that the center of the Virasoro algebra acts as 24
on V and therefore as 26 on H.)

Lemma 5.5. P 1 is the direct sum of T 1 and N1.

Proof. We have to show that any vector p of P 1 can be written as p = t+n for t ∈ T 1,
n ∈ N1. By lemma 5.3, p = k + s for some unique k ∈ K1, s ∈ S1 and by lemma 5.4 k
and s are both mapped into K and S by some set of generators of the algebra generated
by the Li’s, i > 0. As these generators annihilate p, they must also annihilate k and s.
Hence k is in K1 ∩ P 1 = T 1 and s is in S1 ∩ P 1 = N1, so that P 1 = T 1 ⊕N1.

The no ghost theorem now follows immediately, because by lemma 5.3 V 1−(r,r)/2er is
isomorphic to T 1, and by lemma 5.5 T 1 is isomorphic to the quotient of P 1 by its nullspace.

6 Construction of the Monster Lie algebra.

We construct the monster Lie algebra M in the proof of the following theorem. This
is a generalized Kac-Moody algebra acted on by the monster simple group and graded
by II1,1 = Z2. Recall that V is the vertex algebra of the monster, so that V is graded
with pieces of dimensions 1, 0, 196884, ... , and VII1,1 is the vertex algebra of the two
dimensional even Lorentzian lattice II1,1 with matrix

(
0 −1
−1 0

)
.

Theorem 6.1. There exists a Lie algebra M , which we will call the monster Lie algebra,
with the following properties.
(1) M is II1,1-graded.
(2) M has a contravariant bilinear form (, )0 which is positive definite on the piece of

degree (m,n) 6= (0, 0). (By “contravariant bilinear form” we mean that the II1,1-
graded Lie algebra M has an involution ω which acts as −1 on II1,1 and as −1 on
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the piece of degree (0,0), such that the form (u, v) = −(u, ω(v))0 is invariant, and
(u, v) = 0 unless deg(u) + deg(v) = 0.)

(3) M is acted on by the monster. As a representation of the monster, the piece of M of
degree (m,n) is isomorphic to Vmn if (m,n) 6= (0, 0), and to the trivial representation
R2 if (m,n) = (0, 0) where Vn is the piece of the monster vertex algebra V of conformal
weight n+ 1.

Proof. The tensor product V ⊗ VII1,1 of the vertex algebras V and VII1,1 is also a
vertex algebra. If P i is the space of vectors v of this vertex algebra satisfying Lj(v) = 0 if
j > 0, L0(v) = v, then P 1/DP 0 is a Lie algebra with an invariant bilinear form (,), and
an involution ω induced by the trivial automorphism of V and the involution ω of VII1,1

defined in section 3. We define the monster Lie algebra M to be the quotient of the Lie
algebra P 1/DP 0 by the kernel of the form (,). (The kernel of the bilinear form on P 1 is
strictly larger than DP 0.)

The II1,1 grading of the vertex algebra VII1,1 induces a II1,1 grading on the Lie
algebra M . The no-ghost theorem 5.1 implies that the piece of M of degree (m,n) ∈ II1,1

is isomorphic to the piece of V of degree 1 − (m,n)2/2 = 1 −mn if v 6= 0 and to R2 if
v = 0, and that (g, ω(g)) > 0 if g ∈ M is nonzero and homogeneous of nonzero degree in
II1,1. This proves theorem 6.1.

Remark. The construction of a Lie algebra from a vertex algebra in theorem 6.1 can be
carried out for any vertex algebra V with a conformal vector, but it is only when this vector
has dimension 24 that we can apply the no-ghost theorem to identify the homogeneous
pieces of M with those of V . The important point is that the bilinear form on M is positive
definite on any piece of nonzero degree, and this need not be true if the conformal vector
has dimension greater than 24, even if the inner product on V is positive definite.

Theorem 6.2. The monster Lie algebra M is a generalized Kac-Moody algebra.

Proof: This follows from theorem 6.1. The only condition in the definition of a
generalized Kac-Moody algebra that is not immediately obvious from the conclusion of
theorem 6.1 is the one about the Z-grading of M . We can Z-grade M in a suitable way
by letting elements of M of degree (m,n) ∈ II1,1 have degree 2m+ n ∈ Z.

Remark. If VL is the vertex algebra of any positive definite even lattice L of dimension
at most 24 then the bilinear form on the corresponding Lie algebra ML is still almost
positive definite, so ML is a generalized Kac-Moody algebra. If VΛ is the vertex algebra
of the Leech lattice Λ then MΛ is (by definition) the fake monster Lie algebra, and its
simple roots are described explicitly in [8] (where it is called the monster Lie algebra, or
more precisely proved to be isomorphic to something called the monster Lie algebra there).
Section 12 contains a summary of results about the fake monster Lie algebra. I have not
found any other lattices for which the simple roots of the corresponding Lie algebra can
be found explicitly, although for the lattice E8 ⊕E8 all the simple roots of norm 0, −2, or
−4 have multiplicity 0 or 1 so there may be something interesting going on in this case.
There are some calculations for the case when VL is the vertex algebra of L = E8 in Kac,
Moody and Wakimoto [24].

The monster Lie algebra can also be constructed as a semi-infinite cohomology group;
see [19].
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The construction of the monster Lie algebra above looks bizarre at first sight, so we
briefly explain some of the motivation behind it. The fake monster vertex algebra MΛ [8]
is the Lie algebra P 1/(kernel of bilinear form) of the vertex algebra of the lattice II25,1.
This lattice is the sum of the Leech lattice Λ and the lattice II1,1, and the vertex algebra
of the sum of two lattices Λ and II1,1is the tensor product of the vertex algebras VΛ and
VII1,1 of the lattices, so the fake monster Lie algebra is the space P 1/kernel of VΛ⊗VII1,1 .
The monster vertex algebra V is similar to the vertex algebra VΛ, which suggests replacing
VΛ by V in the construction above, and this gives the monster Lie algebra M .

7 The simple roots of the monster Lie algebra.

We find the simple roots of the monster Lie algebra M constructed in section 6. This
algebra turns out to have a Weyl vector, i.e., a vector ρ with (ρ, r) = −(r, r)/2 for all
simple roots r.

We find the simple roots of the monster Lie algebra by using the following identity,
which turns out to be its denominator formula.

Lemma 7.1.
p−1

∏
m>0
n∈Z

(1− pmqn)c(mn) = j(p)− j(q) (7.1)

where j(q)− 744 =
∑

n c(n)qn = q−1 + 196884q + . . ..

Proof. This is essentially just lemma 2 of section 4 of [8]. For convenience we recall
the proof. If we multiply the left hand side by p and take its logarithm we get

−
∑
m>0

∑
n∈Z

∑
k>0

c(mn)pmkqnk/k

=−
∑
m>0

∑
n∈Z

∑
0<k|(m,n)

1
k
c(
mn

k2
)pmqn

=−
∑
m>0

Tm(
∑
n∈Z

c(n)qn)pm

=−
∑
m>0

Tm(j(q)− 744)pm

=
∑
m>0

fm(q)pm

where Tm is the m’th Hecke operator (see Serre [30] proposition 12, chapter VII, section
5) and each fm is a modular function of level 1, holomorphic on the upper half plane, and
therefore a polynomial in j(q). If we exponentiate this we see that the left hand side of
7.1 is of the form

∑
m≥−1 gm(q)pm where each gm is a polynomial in j(q). Each coefficient

of pm of the right hand side of (7.1) is either a constant (if m 6= 0) or 744 − j(q) (if
m = 0) and is therefore also a polynomial in j(q). Any polynomial in j(q) is determined
by its coefficients of qn for n ≤ 0, so to prove the lemma it is sufficient to check that the
coefficients of qn, n ≤ 0 of both sides are the same, which is easy to do. This proves lemma
7.1.
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Remark. The infinite product in (7.1) converges if |p|, |q| < e−2π and p 6= q, and the
infinite series for j(q) converges if |q| < 1.

Theorem 7.2. The simple roots of the monster Lie algebra M are the vectors (1, n)
(n = −1 or n > 0), each with multiplicity c(n).

Let N be the generalized Kac-Moody algebra with root lattice II1,1 whose simple
roots are as stated in the theorem. The simple roots of a generalized Kac-Moody algebra
(with given Cartan subalgebra and choice of fundamental Weyl chamber) are determined
by its root multiplicities because of the denominator formula, so it is sufficient to show
that the multiplicity of the root (m,n) of N is equal to the multiplicity c(mn) of the root
(m,n) of the algebra M (so N is isomorphic to M). The denominator formula of the Lie
algebra N is

eρ
∏
m>0
n∈Z

(1− pmqn)mult(m,n) =
∑

w∈W

det(w)w(eρS) (7.2)

where mult(m,n) is the multiplicity of the root (m,n) of N , p and q are the elements e(1,0)

and e(0,1) of the group ring of II1,1, W is the Weyl group of N which is of order 2 and
whose nontrivial element exchanges p and q, and eρ is e(−1,0) = p−1. By the denominator
formula quoted in section 4 the element S is

S =
∑
A

(−1)|A|eΣA

where the sum is over all finite subsets A of the set of simple imaginary roots such that
any two distinct elements of A are orthogonal, |A| is the number of elements of A, and ΣA
is the sum of the elements of A. All the imaginary simple roots of N have nonzero inner
product with each other, so S is equal to 1−

∑
n>0 c(n)pqn = 1− p(j(q)− q−1 − 744) and

hence the right hand side of the denominator formula (7.2) of N is

eρS − w(eρS) = (p−1 − j(q) + q−1 + 744)− (q−1 − j(p) + p−1 + 744)
= j(p)− j(q)

where w is the nontrivial element of the Weyl group W . This is the right hand side of
(7.1), so that the left hand sides of (7.1) and (7.2) must also be the same, which implies
that the multiplicity of the root (m,n) 6= (0, 0) of N is c(mn). This proves theorem 7.2.

Remark. This shows that the action of the monster on M can be extended to an action
of the full automorphism group of the graded vector space V on M which still preserves
the grading and Lie algebra structure of M . The special property of the action of the
monster on M that we use is that the pieces of degree (a, b) and (c, d) of the II1,1-graded
Lie algebra M are isomorphic as representations of the monster whenever ab = cd 6= 0.

8 The twisted denominator formula.

The monster Lie algebra, like any generalized Kac-Moody algebra, can be written as
a direct sum E ⊕ H ⊕ F of subalgebras, where H is the Cartan subalgebra and E and
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F are the subalgebras corresponding to the positive and negative roots. We recall from
section 4 the equality

Λ(E) = H(E) (8.1)

where in the case of the monster Lie algebra both sides are virtual II1,1-graded modules
over the monster. In this section we calculate both sides of (8.1) explicitly and use this to
obtain some relations between the coefficients of the Thompson series Tg(q).

For any generalized Kac-Moody algebra the homology groups can be calculated as in
section 4 provided we know the simple roots. In the case of the monster Lie algebra M the
simple roots are given in section 7 and are just the vectors (1, n), n = −1 or n > 0 with
multiplicity c(n), so we can calculate the homology groups Hi(E) as follows. Recall that
Hi(E) is the subspace of elements of Λi(E) whose degree r (in the root lattice) satisfies
(r, r+ 2ρ) = 0. For the monster Lie algebra we can think of the roots as elements of II1,1

and can identify the Weyl vector ρ with the norm 0 vector (−1, 0). The condition on r
then says that r + ρ has norm 0, i.e., r is a vector of the form (m, 0) or (1, n), so we just
have to find the elements of Λi(E) of these degrees. The answers we get are as follows
(where we write Mm,n for the subspace of elements of M of degree (m,n) ∈ II1,1).

H0(E) is one dimensional with character 1, because Λ0(E) = R is just a one dimen-
sional space of degree (0, 0).

H1(E) is the subspace of Λ1(E) = E of elements of degree (m, 0) or (1, n). There
are no elements of degree (m, 0) and the space of elements of degree (1, n) is the simple
root space M1,n

∼= Vn, so H1(E) has character p(j(q)− 744) and its piece of degree (1, n)
is isomorphic to the n’th head representation Vn of the monster. (Notice that the first
homology group H1(E) is isomorphic to the sum of the simple root spaces; the same is
true for any generalized Kac-Moody algebra.)

For i ≥ 2 there are no elements in Λi(E) of degree (1, n) because all elements of E
have degrees of the form (m,n) with m ≥ 1. Moreover they all have degrees with n > 0
except for the one dimensional space with degree equal to the real simple root (1,−1), so
the only way for an element of Λi(E) to have degree r = (m, 0) is for it to be the exterior
product of two elements of E of degrees (1,−1) and (m − 1, 1). Therefore H2(E) is the
sum of pieces of degrees (m, 0) for m ≥ 2 isomorphic to Mm−1,1 = Vm−1, and Hi(E) = 0
for i ≥ 3.

To summarize, the homology groups of E are the following II1,1-graded vector spaces,
where we use p and q to stand for one dimensional vector spaces of degrees (1, 0) and (0, 1)
in II1,1, and Vi has degree 0 ∈ II1,1 for all i.

H0(E) = V−1 = R and has character 1.
H1(E) =

∑
n∈Z Vnpq

n and has character
∑

n∈Z c(n)pqn = p(j(q)− 744).
H2(E) = p

∑
m>0 Vmp

m and has character p(j(p)− 744)− 1.
Hi(E) = 0 if i ≥ 3.

For most interesting generalized Kac-Moody algebras there are an infinite number of
nonzero homology groups. In general the largest n with Hn nonzero is equal to (maximum
length of an element of the Weyl group) + (maximum number of pairwise orthogonal
imaginary simple roots) which is usually infinite; however for the monster Lie algebra both
the terms in parentheses happen to be 1.
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The alternating sum ⊕(−1)iHi(E) is therefore equal to p(
∑

m Vmp
m −

∑
n Vnq

n),
where we use p and q to stand for one dimensional vector spaces of degrees (1,0) and (0,1).
If we substitute these values of the homology groups into (8.1) we find that

p−1Λ(
∑

m>0,n∈Z

Vmnp
mqn) =

∑
m

Vmp
m −

∑
n

Vnq
n (8.2)

where Vm is the m’th head representation of the monster simple group. (Both sides of (8.2)
are essentially II1,1-graded virtual representations of the monster simple group.) For any
finite dimensional vector space U , Λ(U) is naturally isomorphic to exp(−

∑
i>0 ψ

i(U)/i)
(where ψi is the i’th Adams operation) by the splitting principle, because both expressions
are multiplicative in U and are equal if U is one dimensional. (The splitting principle says
that two natural operations on representations are equal if they are equal on sums of
1-dimensional representations, i.e., we can pretend that any representation is a sum of
1-dimensional ones, and the Adams operation ψi on virtual representations of a group G is
defined by Tr(g|ψi(U)) = Tr(gi|U); see [2] for more details.) The same is true for infinite
dimensional vector spaces U graded by some lattice L provided that the homogeneous
pieces are all finite dimensional, and the pieces of degree a ∈ L vanish unless a is in some
fixed closed cone which does not contain any line and has its vertex at the origin; this
condition ensures that all the virtual vector spaces Λ(U), ψi(U), and so on are graded
with finite dimensional pieces of each degree and are therefore meaningful. Therefore if we
take the trace of some element g of the monster on both sides of (8.2) we find that

p−1 exp(−
∑
i>0

∑
m>0,n∈Z

Tr(gi|Vmn)pmiqni/i) =
∑
m∈Z

Tr(g|Vm)pm −
∑
n∈Z

Tr(g|Vn)qn (8.3)

where Tr(g|Vn) is the trace of g on the vector space Vn.
These relations between the coefficients of the functions

∑
Tr(g|Vn)qn are the same

as those that Norton [28] conjectured to hold for the modular functions associated with
elements of the monster in Conway and Norton [13, table 2]. The identities 8.3 imply
that the functions Tg(q) are completely replicable in the terminology of [28]; in fact the
definition of a completely replicable function in [28] is that the function should satisfy
some identities equivalent to 8.3. Norton’s conjectures that these modular functions are
completely replicable were proved by Koike [25]. In the next section we use this to prove
that the functions

∑
m Tr(g|Vm)qm are these modular functions.
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9 The moonshine conjectures.

In this section we complete the proof of theorem 1.1, i.e., we verify that the mon-
ster vertex algebra V satisfies Conway and Norton’s moonshine conjectures [13] that the
Thompson series of elements of the monster are certain Hauptmoduls. To do this we show
that the identities (8.3) in section 8 imply that the Thompson series are determined by
their first 5 coefficients cg(i), 1 ≤ i ≤ 5, and then use the fact that the Hauptmoduls listed
by Conway and Norton in [13, table 2] satisfy the same identities ([25]) and have the same
first five coefficients.

The coefficients cg(n) = Tr(g|Vn) of the Thompson series of elements of the monster
satisfy the relations (8.3). If we compare the coefficients of p2 and p4 of both sides of
8.3 and carry out some elementary algebra we find that the coefficients cg(i) satisfy the
recursion formulas below for k ≥ 1:

cg(4k) = cg(2k + 1) + (cg(k)2 − cg2(k))/2 +
∑

1≤j<k

cg(j)cg(2k − j)

cg(4k + 1) = cg(2k + 3)− cg(2)cg(2k) + (cg(2k)2 + cg2(2k))/2

+ (cg(k + 1)2 − cg2(k + 1))/2 +
∑

1≤j≤k

cg(j)cg(2k − j + 2)

+
∑

1≤j<k

cg2(j)cg(4k − 4j) +
∑

1≤j<2k

(−1)jcg(j)cg(4k − j)

cg(4k + 2) = cg(2k + 2) +
∑

1≤j≤k

cg(j)cg(2k − j + 1)

cg(4k + 3) = cg(2k + 4)− cg(2)cg(2k + 1)

− (cg(2k + 1)2 − cg2(2k + 1))/2 +
∑

1≤j≤k+1

cg(j)cg(2k − j + 3)

+
∑

1≤j≤k

cg2(j)cg(4k − 4j + 2) +
∑

1≤j≤2k

(−1)jcg(j)cg(4k − j + 2)

(9.1)

where cg(n) = Tr(g|Vn), cg2(n) = Tr(g2|Vn). In particular if n = 4 or n > 5 then the
coefficient cg(n) is determined by the coefficients cg(i) and cg2(i) for 1 ≤ i < n, so if we
know all the coefficients cg(n) for n = 1, 2, 3, and 5 and all elements g of the monster
then we can work out all the coefficients cg(n). (The coefficient cg(5) is not determined by
the recursion relations because they degenerate into cg(5) = cg(5). The Thompson series
of an element of the monster is not determined by its first 5 coefficients cg(i), 1 ≤ i ≤ 5,
but is determined by the coefficients cgj (i), 1 ≤ i ≤ 5 of the Thompson series of all its
powers gj . For example, the Thompson series of the elements 60F and 93A (in ATLAS
[14] notation) have the same first five coefficients cg(i), 1 ≤ i ≤ 5. Norton showed in [28]
that any completely replicable function

∑
a(n)qn is determined by its 12 coefficients ai,

i = 1, 2, 3, 4, 5, 7, 8, 9, 11, 17, 19, 23.)
For the case of the elliptic modular function j(q), where g = 1, these recursion formulas

were discovered by Mahler [27]. We do not make any use of the formulas (9.1), apart from
the fact that the coefficients for n = 1, 2, 3 and 5 determine all the coefficients. (This
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is easy to check without calculating the formulas (9.1) explicitly. The reason for listing
them explicitly is that they are a very efficient way of working out the coefficients cg on a
computer.)

Norton [28] stated and Koike [25] proved that the modular functions associated with
elements of the monster in [13, table 2] also satisfy the relations (8.3) (with Tr(g|Vm)
replaced by the coefficient of qm of the modular function corresponding to g) and therefore
also satisfy the recursion relations (9.1) above. To prove that the Thompson series of
elements of the monster are these modular functions, it is therefore sufficient to check that
the coefficients of qi, i ≤ 5 of each function are the same.

The coefficients of qi, i ≤ 5 of each modular function are in Conway and Norton [13,
table 4], and they define representations of the monster which decompose as stated at the
end of section 3. We can work out the coefficients cg(i), 1 ≤ i ≤ 5 of the Thompson series
of elements of the monster as follows. Knowing the coefficients cg(i), 1 ≤ i ≤ 5 of the
Thompson series is equivalent to knowing how the representations Vi, 1 ≤ i ≤ 5 of the
monster decompose into irreducible representations of the monster. The only irreducible
representations of the monster with dimension at most that of V5 are the first seven, with
characters χi, 1 ≤ i ≤ 7 in atlas [14] notation. Therefore we can evaluate the coefficients
cg(i), 1 ≤ i ≤ 5 of the Thompson series of all elements of the monster provided we can find
seven elements gj , 1 ≤ j ≤ 7 of the monster for which we can evaluate these coefficients,
and such that the matrix χi(gj), 1 ≤ i, j ≤ 7 is nonsingular, because this determines the
decomposition of Vi, 1 ≤ i ≤ 5, into irreducible representations of the monster.

In their book [16] Frenkel, Lepowsky and Meurman give an explicit formula for the
Thompson series of any element of the centralizer of an involution of type 2B of the monster.
The elements of odd order of 21+24.Co1 correspond to the elements of odd order of the
group 2.Co1 of automorphisms of the Leech lattice Λ. Frenkel, Lepowsky and Meurman’s
formula is particularly easy to evaluate if the corresponding automorphism of the Leech
lattice is of odd order and fixes no nonzero vectors: it becomes

2
∑

n

Tr(g|Vn)qn = 1/ηg(q) + ηg(q)/ηg(q2) + ηg(q)/ηg(q1/2) + ηg(q)/ηg(−q1/2) (9.2)

where ηg(q) is the eta function of g acting on the Leech lattice, equal to η(ε1q) . . . η(ε24q) if
g has eigenvalues ε1, . . . , ε24 on the vector space Λ⊗R, where η(q) = q1/24

∏
n>0(1− qn).

If we put f(τ) = 1/ηg(q) (where q = e2πiτ ) then f(τ) − f(0) is the modular function of
genus 0 that Conway and Norton associate to the element g of the monster in [13, table 2].
The coefficients of the right hand side of the formula above are easy to evaluate explicitly,
and we can check that its coefficients of qi for i ≤ 5 are equal to those of the modular
function f(τ) − f(0). (The right hand side of 9.2 and f(τ) − f(0) are of course equal, as
we can see directly by observing that the right hand side of (9.2) is f(τ) + T2f(τ)/f(τ),
where T2 is a Hecke operator.)

For our seven elements gj of the monster we choose an element g1 of conjugacy classes
2B (for which Frenkel, Lepowsky and Meurman explicitly evaluate the Thompson series),
and 6 more elements gi of the monster corresponding to odd order automorphisms of
the Leech lattice with no nonzero fixed vectors such that the determinant of the 7 × 7
matrix χi(gj) is nonzero. A set of 6 elements satisfying these conditions are those of type
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3B, 5B, 7B, 9B, 13B, 15D in the monster (using atlas [14] notation) corresponding to
elements in the conjugacy classes 3A, 5A, 7A, 9A, 13A, and 15C of Co1 with cycle shapes
3121−12, 561−6, 741−4, 931−3, 1321−2, and 1523−2. The determinant of the matrix χi(gj)
is 35672555520 = 222355171 which is nonzero. The modular groups corresponding to these
elements of the monster are Γ0(3), Γ0(5), Γ0(7), Γ0(9), Γ0(13), and

(
3,0
0,1

)−1
Γ0(5)

(
3,0
0,1

)
. (It

is necessary to use at least one element gi of even order, because the characters of the first
seven representations of the monster are linearly dependent when restricted to elements of
odd order; in fact the character of S2(V1)−Λ2(V1)−V1 is 0 on all elements of odd order.)

We can use this to verify that the representations V1, V2, V3, and V5 of the monster
decompose as stated at the end of section 3, and this implies that the numbers Tr(g|Vn) are
equal to the coefficients of the corresponding modular functions in [13] for n = 1, 2, 3 and
5, and therefore for all n by the recursion relations (9.1). This completes the verification
that the Thompson functions

∑
n Tr(g|Vn)qn are modular functions of genus 0 and proves

theorem 1.1.

10 The monstrous Lie superalgebras.

In the remainder of the paper we describe some Lie algebras similar to the monster
Lie algebra. In this section we describe some associated to elements of the monster.

The twisted denominator formula for some diagram automorphism g of a generalized
Kac-Moody algebra, which is obtained by taking the trace of g on both sides of the identity
H(E) = Λ(E), is often the untwisted denominator formula for some generalized Kac-
Moody algebra or superalgebra. For example, the twisted denominator formula for E6

is just the ordinary denominator formula for F4. We construct a family of Lie algebras
and superalgebras whose denominator formulas are twisted denominator formulas of the
monster Lie algebra. (Warning: unlike the case of finite dimensional Lie algebras, these
are not always subalgebras of the monster Lie algebra; in fact some of them are Lie
superalgebras.)

If g is an element (or conjugacy class) of the monster group M then we write Tg(q) for
the Thompson series Tg(q) =

∑
cg(n)qn =

∑
Tr(g|Vn)qn of g. For example, T1(q) + 744

is the elliptic modular function j(q). The function Tg(q) is the normalized generator for a
genus zero function field of a group containing Γ0(nh), where n is the order of g and h is
an integer with h|(24, n).

We use the convention that for super vector spaces the dimension is defined to be
the dimension of the even part minus the dimension of the odd part. For example, the
multiplicity of a root is the dimension of the root space, and is therefore equal to the di-
mension of the even root space minus the dimension of the odd root space. This provides
an interpretation of roots of negative multiplicity. With this convention for multiplici-
ties the denominator formula for generalized Kac-Moody superalgebras is the same as for
generalized Kac-Moody algebras.

We define the generalized Kac-Moody superalgebra of an element g of the monster
to have root lattice II1,1 and simple roots (1, n) with multiplicity Tr(g|Vn). (These mul-
tiplicities are all integers as can be seen in several ways; for example they are rational by
the recursion relations 9.1 and algebraic integers because they are character values.) This
is really a family of Lie superalgebras rather than a single superalgebra, because for each
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simple root (1, n) we can choose any two nonnegative integers a and b with a−b = Tr(g|Vn)
and take a even simple roots (1, n) and b odd ones. This only seems to be interesting if
all coefficients of Tg are positive, in which case we get a Lie algebra, or if the coefficients
alternate in sign, in which case we get a superalgebra such that the super elements are
those of degree (m,n) with m+ n odd.

We can work out the root multiplicities of these superalgebras because their denom-
inator formulas are the twisted denominator formulas of the monster Lie algebra. The
denominator formula for the Lie superalgebra of g is

p−1
∏

m>0,n∈Z

(1−pmqn)mult(m,n) =
∑
m

Tr(g|Vm)pm−
∑

n

Tr(g|Vn)qn = Tg(p)−Tg(q) (10.1)

and by (8.3)

Tg(p)− Tg(q) = p−1 exp(−
∑
i>0

∑
m>0

∑
n∈Z

Tr(gi|Vmn)pmiqni/i). (10.2)

If we compare the logarithms of (10.1) and (10.2) we find that∑
i>0,m>0,n∈Z

Tr(gi|Vmn)pmiqni/i =
∑

i>0,m>0,n∈Z

mult(m,n)pmiqni/i (10.3)

and applying the Moebius inversion formula to (10.3) shows that

mult(m,n) =
∑

ds|(m,n)

µ(s)
ds

Tr(gd|Vmn/d2s2) (10.4)

where µ is the Moebius function. If f is any function of n whose value depends only on
(n,N) for some N , then the sum

∑
ds=k µ(s)f(d) is 0 unless k|N . The trace Tr(gd|Vn)

depends only on n and (d,N) where N is the order of g, so
∑

ds=k µ(s)Tr(gd|Vmn/d2s2) is
0 unless k|N , hence (10.4) can be simplified to

mult(m,n) =
∑

ds|(m,n,N)

µ(s)
ds

Tr(gd|Vmn/d2s2) (10.5)

This is the formula for the multiplicity of the roots of the superalgebra of g. The
sum on the right of (10.5) can often be simplified by expressing Tgd in terms of Tg. For
example, suppose that N = N1N2 is a squarefree integer such that the group Γ0(N)+d|N1

has genus 0, where Γ0(N) + d|N1 is the group generated by Γ0(N) = {
(
a b
c d

)
∈ SL2(Z)|c ≡

0 mod N} together with the Atkin-Lehner involutions of all divisors of N1. (See [13].) If
g is an element of the monster corresponding to one of these groups then so is gk. By the
compression formula of [13] section 8

Tgp(τ) = Tg(τ) + Tg(τ/p) + . . .+ Tg((τ + p− 1)/p)
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for any prime divisor p of N1, and

Tgp(τ) = Tg(τ)− Tg(τ/p2)− . . .− Tg((τ + p2 − 1)/p2)

for any prime divisor p of N2. These imply that

Tr(gd|Vn) =
∑

d1|(d,N1)

∑
d2|(d,N2)

d1d
2
2µ(d2)Tr(g|Vd1d2

2n) (10.6)

by induction on the number of divisors of d. If we substitute (10.6) into (10.5) and rearrange
we find that

mult(m,n) =
∑

d|(m,n,N1)

Tr(g|Vmn/d)
∏

p|(m,n,N2)

(1− p) (10.7)

where the product is over all primes p dividing (m,n,N2).
We get particularly interesting results when N2 is 1 or 2. First suppose that N2 = 1 so

that N = N1 is one of the 44 squarefree integers that are orders of elements in the monster,
which are the same as the integers for which Γ0(N)+ has genus 0. Let g be an element of
the monster corresponding to the group Γ0(N)+, so that Tg(q) is the normalized generator
of the function field of Γ0(N)+. Then (10.7) becomes

mult(m,n) =
∑

d|(m,n,N)

Tr(g|Vmn/d) (10.8)

and if we substitute (10.8) into (10.1) we obtain the formula

Tg(p)− Tg(q) = p−1
∏

m>0,n∈Z

∏
d|N

(1− pdmqdn)cg(dmn)

which generalizes the product formula for the j function. For these cases the coefficients cg
of the Thompson series Tg(q) are always nonnegative, so the algebras we get are Lie
algebras rather than Lie superalgebras. This seems to happen whenever the corresponding
subgroup of PGL2(R) contains the Fricke involution τ → −1/Nτ . More generally, Norton
has observed ([29]) that the result of applying the Fricke involution to a Thompson series
always has nonnegative coefficients.

Similarly suppose that N2 = 2 so that N1 is one of the squarefree integers 1, 3, 5, 7,
11, or 15 for which Γ0(2N1) + d|N1 has genus 0. Then (10.7) becomes

mult(m,n) = (−1)(m−1)(n−1)
∑

d|(m,n,N1)

Tr(g|Vmn/d).

The coefficients of the Thompson series for these six cases alternate in sign, so the
multiplicity of (m,n) is at least 0 or at most 0 depending on whether m + n is even or
odd. Therefore the root (m,n) is an even root or an odd (super) root depending on the
parity of m+ n. The same is true for any element whose Thompson series has coefficients
that alternate in sign. If the coefficients of a Thompson series are neither at least 0 nor
alternating in sign, then the root space of some root (m,n) is in general a sum of an even
space and an odd space, and the multiplicity of the root is the difference of the dimensions
of these two spaces. However the Lie superalgebras are probably not very interesting unless
the coefficients are either all positive or alternating in sign.
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11 Some modular forms.

We verify some identities involving modular forms of level 2 that we use later. This
section can be missed out if the reader is willing to assume these identities.

The modular forms in this section are usually forms of level 2, i.e. modular forms for
the group Γ(2) = {

(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡

(
1 0
0 1

)
mod 2}. We recall a few facts about this

group from [22]. The group Γ(2) has no elliptic elements, 3 cusps (represented by 0, 1,
and ∞), genus 0, and has index 6 in SL2(Z). The dimension of the space of forms of even
nonnegative weight 2k is equal to k+1 and if f and g are two linearly independent forms of
weight 2 then every form can be written uniquely as a polynomial in f and g. Two modular
forms of level 2 and weight 2k are equal if and only if their coefficients of q0, q1/2, q1, ... , qk

are equal. The group Γ(2) is conjugate to the group Γ0(4) = {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0 mod 4},

and f(q) is a modular form for Γ0(4) if and only if f(q1/2) is a modular form for Γ(2).
We list several modular forms of level 2, together with enough of their Fourier co-

efficients to verify the identities we use in later sections. Recall that to prove that two
modular forms are equal it is sufficient to check that sufficiently many of their Fourier
coefficients are equal.

The following are some forms of weight 4 and level 2.

θE8(q) = 1 + 240(q + 9q2 + 28q3 + . . .+ σ3(n)qn + . . .)

θ2E8(q) = 1 + 240q2 + . . .

θ2E8+v1(q) = 2q1/2 + 56q3/2 + 252q5/2 + . . .

θ2E8+v2(q) = 16q + 128q2 + 448q3 + . . .

η(q)16η(q1/2)−8 = q1/2 + 8q + 28q3/2 + 64q2 + 126q5/2 + 224q3 + . . .

η(q)16η(−q1/2)−8 = −q1/2 + 8q − . . .

η(q)16η(q2)−8 = 1− 16q + 112q2 − 448q3 + . . .

The form θE8(q) is the theta function of the E8 lattice, and the form θ2E8+vi
is the theta

function of the coset of 2E8 containing a vector vi of norm i in the dual of 2E8 but not in
E8 (where 2E8 is the E8 lattice with all norms doubled).

Lemma 11. 1. If η2+(q) = η(q)8η(q2)8 then

θ2E8(q)/∆(q) = 1/η2+(q) + 1/η2+(q1/2) + 1/η2+(−q1/2)

θ2E8+v1(q)/∆(q) = 1/η2+(q1/2)− 1/η2+(−q1/2)

θ2E8+v2(q)/∆(q) = 1/η2+(q1/2) + 1/η2+(−q1/2)

Proof: If we multiply both sides by ∆(q) then both sides are modular forms of level
2 and weight 4, so it is sufficient to check that the coefficients of q0, q1/2, and q1 of both
sides are equal, which we can do using the expressions above.
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The following are some forms of weight 8 and level 2.

θΛ2(q) = 1 + 4320q2 + . . .

θΛ2(q
1/2) = 1 + 4320q1 + 61440q3/2 + 522720q2 + . . .

θΛ2(−q1/2) = 1 + 4320q − 61440q3/2 + 522720q2 + . . .

η(q)32η(q2)−16 = 1− 32q + 480q2 − 4480q3 + . . .

η(q)32η(q1/2)−16 = q + 16q3/2 + 120q2 + 576q5/2 + 2060q3 + . . .

η(q)32η(−q1/2)−16 = q − 16q3/2 + 120q2 . . .

The form θΛ2(q) is the theta function of the Barnes-Wall lattice Λ2 of dimension 16, and
is a modular form for Γ0(2)+. The forms θΛ2+vi

are defined in the same way as for the
lattice 2E8.

Lemma 11. 2. Let η2−(q) be the modular form η(q)−8η(q2)16. Then

θΛ2(q)/∆(q) = 1/η2−(q)− 1/η2−(q1/4)− 1/η2−(iq1/4)− 1/η2−(−q1/4)− 1/η2−(−iq1/4)

θΛ2+v3/∆(q) = 1/η2−(q1/4) + 1/η2−(iq1/4) + 1/η2−(−q1/4) + 1/η2−(−iq1/4)

θΛ2+v2/∆(q) = 1/η2−(q1/4)− 1/η2−(iq1/4) + 1/η2−(−q1/4)− 1/η2−(−iq1/4)

Proof. If we multiply both sides by ∆(q) then both sides are modular forms of weight
8 and level 2, so it is sufficient to check that the coefficients of q0, q1/2, q1, q3/2, and q2 of
both sides are equal.

12 The fake monster Lie algebra.

In the next section we construct a family of superalgebras whose denominator formulas
are twisted versions of the denominator formula of the fake monster Lie algebra, in the
same way that we constructed a family of algebras from the monster Lie algebra. To do
this we need a detailed description of the fake monster Lie algebra, which we give in this
section.

As the Leech lattice Λ is an even lattice, it has a unique central extension

0 → {1,−1} → Λ̂ → Λ → 0

by a group of order 2, such that the commutator of any inverse images of r, s ∈ Λ is
(−1)(r,s). This central extension is unique up to nonunique isomorphism, and its group of
automorphisms Aut(Λ̂) preserving the inner product is a nonsplit extension 224.Aut(Λ).
(The double cover of this nonsplit extension is isomorphic to the double cover of a central-
izer of an involution of type 2B in the monster simple group.)

We start by recalling some results about the fake monster Lie algebra from [8] (where
it is called the monster Lie algebra). The root lattice of the fake monster Lie algebra is the
26 dimensional even unimodular Lorentzian lattice II25,1 = Λ⊕ II1,1, where the norm of
an element (λ,m, n) ∈ Λ⊕ II1,1 is defined to be λ2 − 2mn. The real simple roots are the
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norm 2 vectors of the form (λ, 1, λ2/2−1), and the imaginary simple roots are the positive
multiples nρ of the Weyl vector ρ = (0, 0, 1), each with multiplicity 24. A nonzero vector
r ∈ II25,1 is a root if and only if r2 ≤ 2, in which case it has multiplicity p24(1 − r2/2)
where p24(n) is the number of partitions of n into parts of 24 colours. The fake monster
Lie algebra is essentially the space of physical vectors of the vertex algebra of ÎI25,1, and
can be constructed from the vertex algebra VΛ of Λ̂ in the same way that the monster Lie
algebra M was constructed from the monster vertex algebra V in section 6.

The fake monster Lie algebra is acted on by the group of affine automorphisms of
the Leech lattice which is a split extension Λ.Aut(Λ), because its Dynkin diagram may
be interpreted as the Leech lattice as it has one real simple root (λ, 1, λ2/2 − 1) for each
Leech lattice vector λ. However this is the wrong group of automorphisms to use. A more
useful group of automorphisms of the fake monster Lie algebra is the nonsplit extension
224.Aut(Λ) = Aut(Λ̂), which acts naturally on the vertex algebra of the central extension
Λ̂ of the Leech lattice Λ, and therefore on the fake monster Lie algebra. The point is that
we can use the no-ghost theorem 5.1 to describe how the group Aut(Λ̂) acts on the root
spaces of the fake monster Lie algebra, and it is not obvious how we could do this if we
used the group Aut(Λ).

We now describe what the fake monster Lie algebra MΛ looks like as a module over
Aut(Λ̂) = 224Aut(Λ). If we forget the Λ in the II25,1 = Λ⊕II1,1 grading ofMΛ then we can
consider MΛ to be a II1,1-graded Lie algebra. The piece of MΛ of degree (m,n) ∈ II1,1 is
then isomorphic as a Λ-graded 224Aut(Λ) module to the weight 1−mn piece of the vertex
algebra VΛ of Λ̂ by theorem 6.1, so it is sufficient to describe VΛ explicitly, which we can
do as follows.

We let S = S(⊕i>0Λi) be the symmetric algebra on the sum of a countable number of
copies Λi of the Leech lattice Λ, and grade this by letting the elements of Λi have weight
i. The dimension of the subspace of S of weight n is then equal to p24(n), the number
of partitions of n into parts of 24 = dim(Λ) colours, which is the coefficient of qn−1 of
1/∆(q) = q−1

∏
i>0(1 − qi)−24. We let Z(Λ̂) be the twisted group ring of Λ, which is the

group ring of Λ̂ quotiented out by the ideal (1+ ε) where ε is the element of the group ring
of Λ̂ corresponding to −1 ∈ Λ̂, and grade it by letting ev have weight (v, v)/2 for v ∈ Λ̂.
(This grading does not have the property that deg(ab) = deg(a) + deg(b).) Finally the
graded space VΛ is isomorphic to Z(Λ̂)⊗S. The group 224Aut(Λ) = Aut(Λ̂) acts naturally
on both Λ̂ and on Λi, and so acts on VΛ. Finally the Λ grading on VΛ comes from the Λ
grading on Z(Λ̂). (The Λ-grading on S is the trivial one such that everything has degree
0.) This gives a complete description of VΛ as a Λ-graded Aut(Λ̂) module, and therefore
describes MΛ as a II25,1-graded Aut(Λ̂) module.

We need a lemma to construct some elements of Aut(Λ̂) from elements of Aut(Λ).

Lemma 12.1. Let σ be an automorphism of Λ of order n, let Λσ the vectors of Λ fixed
by σ, and let Λ̂σ be the inverse image of Λσ in Λ̂. If n is odd then σ can be lifted to an
element σ̂ ∈ Aut(Λ) of order n which fixes all elements of Λ̂σ. If n is even then σ can be
lifted to an element σ̂ ∈ Aut(Λ) which fixes all elements of Λ̂σ. The automorphism σ̂n

multiplies any element v of Λ̂ by ε(v,σn/2(v)), and in particular σ̂ has order n if (v, σn/2(v))
is even for all v, and has order 2n otherwise.
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Proof. If n is odd this result is obvious because σ has lifts of the same odd order, and
any lift of odd order must fix all elements of Λ̂g. If n is even then we can multiply any
lift of σ by some element of 224 to get an element σ̂ which fixes all elements of Λ̂σ. The
element vσ(v) . . . σn−1(v) is fixed by σ as it is in Λ̂σ and is therefore equal to σ(v) . . . σn(v).
Hence v = σn(v) if and only if v commutes with σ(v) . . . σn−1(v), which is true if and only
if (v, σ(v)) + . . . (v, σn−1(v)) is even, which is true if and only if (v, σn/2v) is even because
(v, σi(v)) = (v, σn−i(v)). Therefore σn(v) fixes v if and only if (v, σn/2(v)) is even, and
therefore multiplies v by ε(v,σn/2(v)). This proves lemma 12.1.

For example, if σ is an involution of Aut(Λ) whose lattice Λσ has dimension 8 or 16
then it is easy to check that (v, σ(v)) is even for all v ∈ Λ, so σ can be lifted to an element
σ̂ ∈ Aut(Λ̂) which has order 2 and fixes all elements of Λ̂σ. This is not possible if σ is an
involution with Λσ 12-dimensional, because there are vectors v such that (v, σ(v)) is odd.

The homology H(E) of the subalgebra E of MΛ corresponding to the positive roots
can be described as follows. We let eρ stand for a one dimensional II25,1-graded vector
space of degree ρ ∈ II25,1. Then the virtual vector space eρH(E) is antisymmetric under
the Weyl group, so it is only necessary to describe the subspace of it generated by elements
whose degrees are in the Weyl chamber of II25,1. By the remarks at the end of section 4
this subspace is naturally isomorphic to the virtual vector space Λ(⊕i>0Λi), where Λi is a
copy of the vector space of Λ with degree iρ ∈ II25,1. This follows from the fact that the
imaginary simple roots of MΛ are the positive multiples of ρ each with multiplicity 24, so
all imaginary simple roots are orthogonal to each other, so the subspace of the homology
group that we need is just the exterior power of the sum of the root spaces of the imaginary
simple roots.

13 The denominator formula for fake monster Lie algebras.

We can now calculate a twisted denominator formula for each element of Aut(Λ̂),
which is often the denominator formula for some other Lie algebra or superalgebra. In this
section we calculate a few examples of these Lie algebras.

We let g be some element of Aut(Λ̂) = 224Aut(Λ) of order N , and we let L be the
sublattice of Λ fixed by g. The projection of Λ into the vector space of L is the dual lattice
L′ of L because Λ is unimodular. For simplicity we assume that any power gn of g fixes
all elements of Λ̂ which are in the inverse image of any vector of Λ fixed by gn. (If we
do not assume this condition we can still carry out most of the work here, but we would
have to put more effort into keeping track of signs.) Lemma 12.1 provides us with plenty
of examples of such elements g; for example any element of odd order.

We consider both sides of the formula

Λ(E) = H(E)

to be L′-graded virtual g modules. We calculate the trace of g on both sides, which can
be thought of as an element of some completion of the group ring of L′. We can calculate
the trace of g on Λ(E) provided we know exactly how g acts on E, and we can calculate
the trace of g on H(E) if we know exactly how g acts on the simple root spaces of MΛ.
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We first calculate the trace of g on Λ(E) = exp(−
∑

i>0 ψ
i(E)/i) (where ψi are the

Adams operations). This trace is equal to

exp(−
∑
v∈L′

∑
i>0

Tr(gi|Ev)eiv/i) (13.1)

where Ev is the subspace of E whose L′-degree is v. (Note added May 1999: the published
version of this formula incorrectly had a term Eiv instead of Ev.) We wish to express the
trace of g in the form

∏
(1 − er)mult(r) = exp−

∑
r

∑
i>0 e

irmult(r)/i for some numbers
mult(r). By applying the Moebius inversion formula to (13.1) as in section 11 we see that
the numbers mult(r) are given by

mult(r) =
∑

ds|((r,L),N)

µ(s)Tr(gd|Er/ds)/ds (13.2)

where (r, L) is the highest common factor of the numbers (r, a) for a ∈ L.
By theorem 2.2 of [6] there is a reflection group W g acting on the lattice L, which

may be taken as any of the following groups.
1 The subgroup of W of elements that commute with g.
2 The subgroup of W of elements that map ρ into L.
3 The subgroup of W of elements mapping L into L.

The positive roots of W g are the vectors which are the sums of the conjugates of some
positive real root of II25,1. The simple roots of W g are the sums of orbits of simple roots
of W that have positive norm, and they are also the roots of W g satisfying (r, ρ) = −r2/2,
so ρ is a norm 0 Weyl vector for W g. (Warning: W g is not always the full reflection group
of L.)

From (13.2) we can see that any 2 positive vectors of L′ conjugate under W g have the
same multiplicity. If r is a real simple root of W g then an easy calculation using (13.2)
shows that mult(r) is 1, so mult(r) is 1 for any positive real root of W g, because any such
root is conjugate under W g to a simple root of W g. If r has positive norm but is not a
root of W g then mult(r) = 0.

The product
eρ

∏
r∈L

(1− er)mult(r)

is therefore antisymmetric under the reflection group W g, so it is equal to∑
w∈W g det(w)w(eρS) for some S with eρS in the Weyl chamber of W g. (The determinant

of w means its determinant as an automorphism of L, rather than as an automorphism of
Λ.) This sum is also equal to the trace of g on eρH(E) because it is equal to the trace of
g on eρΛ(E), so S is the trace of g on the subspace of H(E) in the Weyl chamber of W g.
This subspace is isomorphic to Λ(⊕i>0Λi) where Λi is a copy of the Leech lattice with
degree iρ ∈ II25,1. The trace of g on this subspace is just e−ρηg(eρ) where ηg(q) is defined
to be η(ε1q) . . . η(ε24q) if g has eigenvalues ε1, ... , ε24 on the vector space of Λ. (If G has
generalized cycle shape ab1

1 a
b2
2 . . . then ηg(q) = η(qa1)b1η(qa2)b2 . . ..) Therefore we finally

get
eρ

∏
r∈L

(1− er)mult(r) =
∑

w∈W g

det(w)w(ηg(eρ)). (13.3)
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The right hand side of this is exactly the denominator formula for a generalized Kac-
Moody superalgebra with the following simple roots.

1 The real simple roots are the simple roots of the reflection group W g, which are the
roots r with (r, ρ) = −(r, r)/2.

2 The imaginary simple roots are the positive multiples iρ of the Weyl vector ρ, with
multiplicity equal to

mult(iρ) =
∑

jak=i

bk

if g has generalized cycle shape ab1
1 a

b2
2 . . ..

Therefore the left hand side is the left hand side of the denominator formula for this
generalized Kac-Moody superalgebra, so its positive roots have multiplicity mult(r).

14 Examples of fake monster Lie algebras.

We now evaluate both sides of the denominator formula (13.3) for several elements of
Aut(Λ̂), so we get several example of generalized Kac-Moody algebras whose simple roots
and root multiplicities are known explicitly.

Example 1. The fake baby monster Lie algebra of rank 18. For this example we let
g ∈ Aut(Λ̂) be an element of order 2 which is the lift of an element of order 2 of Aut(Λ)
which fixes a 16 dimensional sublattice Λg of Λ, such that g fixes all elements of Λ̂g. By
lemma 12.1 such an element g exists, and the lattice Λg is the Barnes-Wall lattice of
dimension 16 and determinant 28 [12]. The root lattice L is the sum of Λg and the two
dimensional even Lorentzian lattice II1,1. The Barnes-Wall lattice Λg has no roots, so by
theorem 3.1 of [6] the group W g is the full reflection group of L.

We can calculate the multiplicities mult(r) explicitly. The result we get is that
mult(r) = pg(1 − r2/2) if r ∈ L and r /∈ 2L′, mult(r) = pg(1 − r2/2) + pg(1 − r2/4)
if r ∈ 2L′, and mult(r) = 0 otherwise, where pg(1 + n) is the coefficient of qn in
1/ηg(q) = q−1

∏
i>0(1− qi)−8(1− q2i)−8 = q−1 + 8 + 44q + . . .. If r ∈ L′ then Tr(g|Er) is

0 if r /∈ L and equal to the coefficient of q−r2/2 in 1/ηg(q) if r ∈ L. The value of Tr(g2|Er)
is just the dimension of Er, which is the coefficient of q−r2/2 in θΛg⊥+r⊥(q)/∆(q) where
θΛg⊥+r⊥(q) is the theta function of the coset Λg⊥ + r⊥ of the lattice Λg⊥ and where r⊥ is
a vector such that r + r⊥ is in II25,1. If we substitute these values into the formula

mult(r) = Tr(g|Er)− Tr(g|Er/2)/2 + Tr(g2|Er/2)/2

we find that mult(r) is equal to the coefficient of q−r2/2 in

0 if r /∈ L
1/ηg(q) if r ∈ L, r /∈ 2L′

1/ηg(q) + θΛg⊥+r⊥(q4)/∆(q4) if r ∈ 2L′, r /∈ 2L

1/ηg(q)− 1/ηg(q4)/2 + θ
Λg⊥ (q4)/∆(q4)/2 if r ∈ 2L.

By lemma 11.1 this implies that if r ∈ 2L′ then mult(r) is equal to the coefficient of q−r2/2

of 1/ηg(q) + 1/ηg(q2). Therefore the explicit version of the product formula for the fake
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baby monster Lie algebra is

eρ
∏

r∈L+

(1−er)pg(1−r2/2)
∏

r∈2L′+

(1−er)pg(1−r2/4) =
∑

w∈W g

det(w)w(eρ
∏
i>0

(1−eiρ)8(1−e2iρ)8)

where L is the Lorentzian lattice which is the sum of the Barnes-Wall lattice Λg and the
two dimensional even Lorentzian lattice, W g is its reflection group which has Weyl vector
ρ, and L′ is the dual of L.

Example 2. We can construct a similar Lie algebra for any of the primes p = 2, 3, 5,
7, 11, or 23 with (p+ 1)|24. We let g be an element of Aut(Λ̂) of order p corresponding to
an element of M24 ⊂ Aut(Λ) of cycle shape 124/(p+1)p24/(p+1). We assume that the lattice
Λg of dimension 48/(p+ 1) has no roots and if r ∈ Λg⊥′ then

θΛg⊥+r(q) = η(q)24p/(p+1)(η(qp)−24/(p+1)δ(r ∈ Λg⊥) +
∑

0≤i<p

ε−ipr2/2η(εiq1/p)−24/(p+1))

where ε is a primitive p’th root of 1 and where δ(r ∈ Λg⊥) is 1 if r ∈ Λg⊥ and 0 otherwise.
These assumptions are in principle not difficult to prove if they are true, as they are
essentially just identities between modular forms. (For p = 2 they are just lemma 12.1.)

Assuming these identities, an argument similar to the one above for p = 2 shows that
the denominator formula for the Lie algebra of G is

eρ
∏

r∈L+

(1− er)pg(1−r2/2)
∏

r∈pL′+

(1− er)pg(1−r2/2p)

=
∑

w∈W g

det(w)w(eρ
∏
i>0

(1− eiρ)24/(p+1)(1− epiρ)24/(p+1))

where
∑

i>0 pg(1 + i)qi = 1/ηg(q). For p= 2, 3, 5, 7, and 11 these Lie algebras seem to
correspond to the baby monster, the Fischer group Fi24, the Harada Norton group, the
Held group and the Mathieu group M12 in the same way that the fake monster Lie algebra
corresponds to the monster simple group.

Example 3. The fake Conway Lie superalgebra of rank 10. This is the algebra de-
scribed at the end of section 2, and seems to correspond to Conway’s simple group Co1.
We let g ∈ Aut(Λ̂) be an element of order 2 which is the lift of an element of order 2 of
Aut(Λ) which fixes a lattice Λg of Λ of dimension 8. This lattice Λg is isomorphic to the
E8 lattice with all norms doubled, so if we halve all the norms of the lattice Λg ⊕ II1,1 we
get the nonintegral lattice of determinant 1/4 which is the dual of the sublattice of even
vectors of I9,1. A calculation similar to that in example 1 but using lemma 11.2 shows
that the denominator formula of this Lie superalgebra is

eρ
∏

r∈Π+

(1− er)mult(r) =
∑

w∈W

det(w)w(eρ
∏
n>0

(1− enρ)(−1)n8)

where the multiplicity of the root r = (v,m, n) ∈ L is equal to

mult(r) = (−1)(m−1)(n−1)pg((1− r2)/2) = (−1)m+n|pg((1− r2)/2)|,
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and pg(n) is defined by ∑
pg(n)qn = q−1/2

∏
n>0

(1− qn/2)−(−1)n8.

15 Open questions

We list a few conjectures and open questions about the Lie algebras and superalgebras
we have constructed.

(1) Prove the assumptions about the modular forms used in example 2 in section 14.
In principle this should be easy (at least when they are true) because they just involve
checking a finite number of identities between modular forms.

(2) Investigate the Lie algebras and superalgebras coming from other elements of the
monster or Aut(Λ) and write down their denominator formulas explicitly in some nice
form.

(3) Find a natural construction for these Lie algebras and superalgebras (i.e. other
than by generators and relations). We used natural constructions for the monster Lie
algebra and the fake monster Lie algebra from vertex algebras, but I do not know of any
similar constructions for most of the other Lie algebras. The easiest case is the superalgebra
of rank 10 which can be constructed from superstrings on a 10-dimensional torus. (The
even part of the rank 10 superalgebra was constructed in [3, 4]; the odd part is more
difficult to construct.) A natural construction should give actions of various finite groups
on these Lie algebras; for example the double cover of the baby monster should act on the
baby monster Lie algebra.

(4) Describe the Lie bracket from Vab ⊗ Vcd to V(a+c)(b+d) of the monster Lie algebra
explicitly in terms of the vertex algebra operations on V .

(5) Is the baby monster Lie algebra a subalgebra of the monster Lie algebra in a way
that preserves the action of the double cover of the baby monster? Similarly for the other
monstrous Lie algebras.

(6) Are there any generalized Kac-Moody algebras, other than the finite dimensional,
affine, monstrous or fake monstrous ones, whose simple roots and root multiplicities can
both be described explicitly? The monstrous and fake monstrous algebras are both fi-
nite families, each with a few hundred members, corresponding roughly to the conjugacy
classes in the monster and in Aut(Λ̂). One example of a denominator formula for a Lie
superalgebra of rank 3 is the identity∑

i+j+k=0

(−p)jk(−q)ik(−r)ij =
∏

i+j+k>0

((1− piqjrk)/(1 + piqjrk))c(ij+jk+ki)

where c(i) is defined by
∑

n c(n)qn =
∏

n>0(1+qn)/(1−qn) = 1+2q+4q2+8q3+14q4+. . ..
(7) Find all completely replicable functions. (The ones with integral coefficients were

found by computer in [1].) Are nontrivial completely replicable functions always modular
functions of genus 0? A proof of this conjecture of Norton’s [28] which was not a case by
case verification would be much neater than the argument in section 9.

(8) Is it possible to say anything interesting from Lie algebras constructed from the
vertex algebras of lattices (other than the Leech lattice) as in section 6? The two obvious
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candidates are the lattices E8 and E8 ⊕ E8, so that the corresponding Lie algebras have
root lattices II9,1 and II17,1. The real simple roots of these Lie algebras are the Dynkin
diagrams of the reflection groups of the lattices, which were described by Vinberg. There
are some calculations connected with the Lie algebra of II9,1 in [24].
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